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General notations

O Vector — We note z € R™ a vector with n entries, where z; € R is the it" entry:

x
3

eRrR™

Ty

0 Matrix — We note A € R™*™ a matrix with m rows and n columns, where A4; ; € R is the
entry located in the it" row and j** column:
A1 Ain
A - . 6 Rmxn

Ar.n,l Am,n
Remark: the vector x defined above can be viewed as a n X 1 matriz and is more particularly
called a column-vector.

0 Identity matrix — The identity matrix I € R?*X"™ is a square matrix with ones in its diagonal
and zero everywhere else:

1 0 - 0
=0

A

06 -~ 0 1

Remark: for all matrices A € R"*"™ we have A X [ =1 x A= A.

0 Diagonal matrix — A diagonal matrix D € R™*"™ is a square matrix with nonzero values in
its diagonal and zero everywhere else:

i 0 - 0
p=| 0
T |
0 - 0 dn

Remark: we also note D as diag(di,...,dn).

Matrix operations
0 Vector-vector multiplication — There are two types of vector-vector products:

e inner product: for z,y € R™, we have:

n

Ty = E z;y; € R

=1

e outer product: for x € R™,y € R™, we have:

a:yT: ( ) ERan

0 Matrix-vector multiplication — The product of matrix A € R™*" and vector x € R" is a
vector of size R™, such that:

T1y1 T1Yn

Tmy1 TmYn

T
a1 n
Ax = : = E ac,ix; € R™
ame =1

T

where a.;

are the vector rows and a. ; are the vector columns of A, and z; are the entries
of z.

0 Matrix-matrix multiplication — The product of matrices A € R™*™ and B € R"*? is a
matrix of size R"XP such that:

T T

ar,1bcyl ar,1bc,p n

_ . . _ 3T nxp
AB = : : = E ac,ib, ; €R

T T i

ar,mbC,l ar,mbcap i=1

where afi, b?i are the vector rows and ac,j, bc,; are the vector columns of A and B respec-
) )
tively.

(J Transpose — The transpose of a matrix A € R™*" noted AT, is such that its entries are
flipped:

Vij, Al = A,

Remark: for matrices A,B, we have (AB)T = BT AT

0 Inverse — The inverse of an invertible square matrix A is noted A~! and is the only matrix
such that:

\AA*l :A*lA:I\

Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)™! =
B-tA-!L

0 Trace — The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:
n
tr(A) = Z A
i=1

Remark: for matrices A,B, we have tr(AT) = tr(A) and tr(AB) = tr(BA)

0 Determinant — The determinant of a square matrix A € R™*™ noted |A| or det(A) is
expressed recursively in terms of A\; \;, which is the matrix A without its it" row and ;"
column, as follows:
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det(A) = [A] = D "(=1)H Aq 514y ]
j=1

Remark: A is invertible if and only if |A| # 0. Also, |AB| = |A||B| and |AT| = |A|.

Matrix properties

0O Symmetric decomposition — A given matrix A can be expressed in terms of its symmetric
and antisymmetric parts as follows:

A+ AT A— AT
A= Jr2 + 2

~—— ~——

Symmetric  Antisymmetric

0 Norm — A norm is a function N : V. — [0, + oo where V is a vector space, and such that
for all z,y € V, we have:

« N(z+y) <N(@)+ N(y)
e N(az) = |a|N(z) for a scalar
o if N(z) =0, thenz =0

For x € V, the most commonly used norms are summed up in the table below:

Norm Notation | Definition Use case
n
Manhattan, L1 [lz]|1 E |zl LASSO regularization
i=1
Euclidean, L2 [|z]|2 Ridge regularization
1
n P
p-norm, LP [lz]|p E z? Holder inequality
i=1
Infinity, L° [|2|] oo max |z;| Uniform convergence
2

0 Linearly dependence — A set of vectors is said to be linearly dependent if one of the vectors
in the set can be defined as a linear combination of the others. ) ) )
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

0 Matrix rank — The rank of a given matrix A is noted rank(A) and is the dimension of the
vector space generated by its columns. This is equivalent to the maximum number of linearly
independent columns of A.

0O Positive semi-definite matrix — A matrix A € R"*™ is positive semi-definite (PSD) and
is noted A > 0 if we have:

and ‘VwGR", 2T Az >0

Remark: similarly, a matriz A is said to be positive definite, and is noted A = 0, if it is a PSD
matriz which satisfies for all non-zero vector x, ¥ Az > 0.

O Eigenvalue, eigenvector — Given a matrix A € R™"*" X is said to be an eigenvalue of A if
there exists a vector z € R™\{0}, called eigenvector, such that we have:

0 Spectral theorem — Let A € R*"X™. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U € R®*™. By noting A = diag(A1,...,An), we have:

| 3A diagonal, A=UAU” |

0 Singular-value decomposition — For a given matrix A of dimensions m X n, the singular-
value decomposition (SVD) is a factorization technique that guarantees the existence of U m xm
unitary, ¥ m X n diagonal and V' n X n unitary matrices, such that:

A=UxvT

Matrix calculus

O Gradient — Let f : R™*" — R be a function and A € R™*™ be a matrix. The gradient of f
with respect to A is a m X n matrix, noted V 4 f(A), such that:

(VAf(A)) = Zj;(:)

0,3

Remark: the gradient of f is only defined when f is a function that returns a scalar.

O Hessian — Let f : R® — R be a function and x € R" be a vector. The hessian of f with
respect to x is a n X n symmetric matrix, noted Vif(x), such that:

2 _ 82f(~’0)
(vzﬂx))m = e

Remark: the hessian of f is only defined when f is a function that returns a scalar.

O Gradient operations — For matrices A,B,C, the following gradient properties are worth
having in mind:

\ Vatr(AB) = BT \ \ Var f(A) = (Vaf(A)T \

| Vatr(ABATC) = CAB+ 0T ABT | [ V4l = |AI(A™)7 |
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Introduction to Probability and Combinatorics

0O Sample space — The set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.

O Event — Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment is contained
in E, then we say that E has occurred.

0 Axioms of probability — For each event F, we denote P(E) as the probability of event E
occuring. By noting F1,...,E, mutually exclusive events, we have the 3 following axioms:

P OE :ZH:P(EZ-)
=1 =1

M [o<pPE) <1] @ [PE)=1] ©)

O Permutation — A permutation is an arrangement of r objects from a pool of n objects, in a
given order. The number of such arrangements is given by P(n,r), defined as:

n!

P(?’LT) = m

0 Combination — A combination is an arrangement of r objects from a pool of n objects, where
the order does not matter. The number of such arrangements is given by C(n,r), defined as:

P(n,r) n!

rl rl(n —r)!

C(n,r) =

Remark: we note that for 0 < r < n, we have P(n,r) > C(n,r).

Conditional Probability

0 Bayes’ rule — For events A and B such that P(B) > 0, we have:
P(B|A)P(A)
P(B)

P(A|B) =

Remark: we have P(AN B) = P(A)P(B|A) = P(A|B)P(B).

0 Partition — Let {A;,¢ € [1,n]} be such that for all i, A; # @. We say that {4;} is a partition
if we have:

n
Vi#j,AiNA;j=0 and UAZ-:S

=1

n
Remark: for any event B in the sample space, we have P(B) = Z P(BJA;)P(A;).
1=1

0 Extended form of Bayes’ rule — Let {4;,7 € [1,n]} be a partition of the sample space.
‘We have:

P(Ag|B) = f(BlAk)P(Ak)

> P(BIA)P(A)
i=1

O Independence — Two events A and B are independent if and only if we have:

\ P(ANB) = P(A)P(B)

Random Variables

0 Random variable — A random variable, often noted X, is a function that maps every element
in a sample space to a real line.

0 Cumulative distribution function (CDF) — The cumulative distribution function F,
which is monotonically non-decreasing and is such that lim F(z) =0and lim F(z)=1,is

T—— 00 T—+o00
defined as:

F(z) = P(X < x)

Remark: we have P(a < X < B) = F(b) — F(a).

0 Probability density function (PDF') — The probability density function f is the probability
that X takes on values between two adjacent realizations of the random variable.

O Relationships involving the PDF and CDF — Here are the important properties to know
in the discrete (D) and the continuous (C) cases.

Case CDF F PDF f Properties of PDF
(D) | F@)=Y P(X =) | fl@;)=P(X=2;) | 0<f(w;) <land Y fla;)=1
z;<T J
x +o00
© | F@=[ sway M@= | f@zoand [ )=

0 Variance — The variance of a random variable, often noted Var(X) or o2

spread of its distribution function. It is determined as follows:

| Var(x) = E[(X — E[X)))] = E[X?] - B[X)? |

, is a measure of the

0 Standard deviation — The standard deviation of a random variable, often noted o, is a
measure of the spread of its distribution function which is compatible with the units of the
actual random variable. It is determined as follows:

o =4/ Var(X)
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0 Expectation and Moments of the Distribution — Here are the expressions of the expected
value E[X], generalized expected value E[g(X)], k** moment E[X*] and characteristic function
(w) for the discrete and continuous cases:

Case |  BIX] Blg(X)] BIX*) (@)
@) | D wfe) | Y e@di@) | Y akf@) | Y S
i=1 =1 =1 i=1
+oco “+oo +oo ~+o0 .
(©) L zf(z)dz /7 g(z) f(z)dz /7 zF f(z)da L f(x)e'“ dx
Remark: we have e'“% = cos(wz) + isin(wz).

0 Revisiting the k*" moment — The k" moment can also be computed with the characteristic

function as follows:
1 k
B k] _ [8 1/1}
w=0

ik | Qwk

0O Transformation of random variables — Let the variables X and Y be linked by some
function. By noting fx and fy the distribution function of X and Y respectively, we have:

dxr ‘
dy

O Leibniz integral rule — Let g be a function of z and potentially ¢, and a, b boundaries that
may depend on c. We have:

1o} b ob da b g
2 ( / g(w)dw) =G0 e =5 g+ [ s

fy(y) = fx ()

0 Marginal density and cumulative distribution — From the joint density probability
function fxy, we have:

Case Marginal density Cumulative function
(D) fx(zi) = Z Ixy (zi,95) Fxy(z,y) = Z Z Ixy (i,y5)
J T; ST Y; <Y
+o0 x Yy
© | sx@= [ rxvindy | Ferea)= [ 7 peva)ia

O Distribution of a sum of independent random variables — Let Y = X + ... + X, with
X1,..., X, independent. We have:

v (@) =[] wx, @)
k=1

0 Covariance — We define the covariance of two random variables X and Y, that we note U%{y
or more commonly Cov(X,Y), as follows:

Cov(X,Y) £ 0%y = E[(X — px)(Y — py)] = E[XY] — pxpy

0 Correlation — By noting o x, oy the standard deviations of X and Y, we define the correlation
between the random variables X and Y, noted pxy, as follows:

Remarks: For any X,Y, we have pxy € [—1,1]. If X and Y are independent, then pxy = 0.

0 Main distributions — Here are the main distributions to have in mind:

Type | Distribution PDF (w) E[X] Var(X)
O Chebyshev’s inequality — Let X be a random variable with expected value p and standard N _ oy (™) & -z iw n
deviation o. For k,o > 0, we have the following inequality: X~ B(n.p) P(X =) )P (pe™ +q) np nPq
1 Binomial x € [0,n]
P(X = pl > ko) < (D)
X ~ Po(u) P(X=x)= 'u—'e_“ er(e™ 1) n n
. L. . Poisson z €N
Jointly Distributed Random Variables — - 2
1 iwb _ jiwa b b—
X ~uad) | flo)=; e - ¢ a;r ( 12a)
0O Conditional density — The conditional density of X with respect to Y, often noted fx|y, Uniform v € [a}] —-a (b—a)iw
is defined as follows: ’
fXY(:E7y) (C) X NN( U) f(x) _ 1 e—%(“”;u)z eiwu_%w2o‘2 o2
Ixy(z) = fi() H oo H
vy Gaussian rz €R
e 1 1 1
0 Independence — Two random variables X and Y are said to be independent if we have: X ~ Exp(A) f(@) = Ae 1 _ iw by 2
. DY
Fxy @) = Fx@)fy () Exponential | o € Ry
STANFORD UNIVERSITY FaLL 2018
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Parameter estimation

0 Random sample — A random sample is a collection of n random variables X1, ..., X,, that
are independent and identically distributed with X.

0 Estimator — An estimator § is a function of the data that is used to infer the value of an
unknown parameter 6 in a statistical model.

0 Bias — The bias of an estimator § is defined as being the difference between the expected
value of the distribution of 6 and the true value, i.e.:

Bias(d) = E[0] — 0

Remark: an estimator is said to be unbiased when we have E [é} =6.

0 Sample mean and variance — The sample mean and the sample variance of a random
sample are used to estimate the true mean g and the true variance o2 of a distribution, are
noted X and s? respectively, and are such that:

n n
— 1 1 —
X=- E X;| and |s?=62= E (XifX)Z
n n—1
i=1 i=1
O Central Limit Theorem — Let us have a random sample Xj,..., X,, following a given

distribution with mean p and variance o2, then we have:

— o
XN (“’ %)

https://stanford.edu/~shervine
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Introduction to Supervised Learning

Given a set of data points {x(l), ...,z(m>} associated to a set of outcomes {y(l), ...,y(’")}, we
want to build a classifier that learns how to predict y from x.

O Type of prediction — The different types of predictive models are summed up in the table
below:

Regression Classifier
Outcome Continuous Class
Examples | Linear regression | Logistic regression, SVM, Naive Bayes

0 Type of model — The different models are summed up in the table below:

Discriminative model Generative model

Goal Directly estimate P(y|x) Estimate P(z|y) to deduce P(y|z)

‘What’s learned Decision boundary Probability distributions of the data

Illustration /

Examples Regressions, SVMs GDA, Naive Bayes

Notations and general concepts

0O Hypothesis — The hypothesis is noted hy and is the model that we choose. For a given input
data z(?)| the model prediction output is hg(z().

O Loss function — A loss function is a function L : (z,y) € R X Y — L(z,y) € R that takes as
inputs the predicted value z corresponding to the real data value y and outputs how different
they are. The common loss functions are summed up in the table below:

Least squared Logistic Hinge Cross-entropy
1
5w =27 log(1 +exp(—y2)) | max(0,1 —yz) | —[ylog(z)+ (1 y)log(l - 2)]
y=-1 y ’! 1 y=0 1
yER y=1 y=1 > 0 v |«
Linear regression | Logistic regression SVM Neural Network

0 Cost function — The cost function J is commonly used to assess the performance of a model,
and is defined with the loss function L as follows:

J0) =Y Llho(2?),y™)
i=1

O Gradient descent — By noting o € R the learning rate, the update rule for gradient descent
is expressed with the learning rate and the cost function J as follows:

\9<—9—aw(9)\

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training
example, and batch gradient descent is on a batch of training examples.

0O Likelihood — The likelihood of a model L(6) given parameters 6 is used to find the optimal
parameters 6 through maximizing the likelihood. In practice, we use the log-likelihood £(6) =
log(L(0)) which is easier to optimize. We have:

6°P* = arg max L(0)
0

0O Newton’s algorithm — The Newton’s algorithm is a numerical method that finds 6 such
that ¢/(0) = 0. Its update rule is as follows:

()
- o' (0)

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has
the following update rule:

00— (V3e0)) " Vol(0)
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Linear regression

We assume here that y|x;0 ~ N(p,02)

0O Normal equations — By noting X the matrix design, the value of § that minimizes the cost
function is a closed-form solution such that:

0= XTx)"1xTy

0O LMS algorithm — By noting « the learning rate, the update rule of the Least Mean Squares
(LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff
learning rule, is as follows:

m
Vi, 0; <« 0; +a Z [y = ho(z)] gE;)

i=1

Remark: the update rule is a particular case of the gradient ascent.

O LWR - Locally Weighted Regression, also known as LWR), is a variant of linear regression that
weights each training example in its cost function by w® (), which is defined with parameter

T €R as:
) (1) _ 2)2
w® (z) = exp <M>

272

Classification and logistic regression

0 Sigmoid function — The sigmoid function g, also known as the logistic function, is defined
as follows:

1
Vz €R, |g(z) = ———— €]0,1]
e

1+

O Logistic regression — We assume here that y|x; 6 ~ Bernoulli(¢). We have the following
form:

¢ =ply=1|z;0) = =g(0"x)

1
1+ exp(—0Tx)

Remark: there is no closed form solution for the case of logistic regressions.

O Softmax regression — A softmax regression, also called a multiclass logistic regression, is
used to generalize logistic regression when there are more than 2 outcome classes. By convention,
we set O = 0, which makes the Bernoulli parameter ¢; of each class ¢ equal to:

_ exp (6T z)
=

@i

exp(@fw)

=1

Generalized Linear Models

0 Exponential family — A class of distributions is said to be in the exponential family if it can
be written in terms of a natural parameter, also called the canonical parameter or link function,
7, a sufficient statistic T'(y) and a log-partition function a(n) as follows:

p(y;n) = b(y) exp(nT'(y) — a(n))

Remark: we will often have T(y) = y. Also, exp(—a(n)) can be seen as a normalization param-
eter that will make sure that the probabilities sum to one.

Here are the most common exponential distributions summed up in the following table:

Distribution n T(y) a(n) b(y)
Bernoulli log (%) Y log(1 + exp(n)) 1
2 2
Gaussian " Y % Van &XP (7 y?)

. 1
Poisson log(A) y e =

!
Geometric log(1 — ¢) Y log (%) 1

0 Assumptions of GLMs — Generalized Linear Models (GLM) aim at predicting a random
variable y as a function fo z € R**! and rely on the following 3 assumptions:

ho(z) = Ely|x; 0] (3)

(1) [l2:0 ~ ExpFamily(n)|  (2)

Remark: ordinary least squares and logistic regression are special cases of generalized linear
models.

Support Vector Machines

The goal of support vector machines is to find the line that maximizes the minimum distance to
the line.

0 Optimal margin classifier — The optimal margin classifier h is such that:

h(z) = sign(wTz — b) ‘

where (w,b) € R"™ x R is the solution of the following optimization problem:

such that ‘y(i)(wTa:(i) -b>1

1
min — ||w||?
2
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support vectors

Remark: the line is defined as .

0 Hinge loss — The hinge loss is used in the setting of SVMs and is defined as follows:

| L(z9) = [1 — y2l+ = max(0,1 - y2) |

O Kernel — Given a feature mapping ¢, we define the kernel K to be defined as:
| K(@.2) = 6@) 9(2)

2
In practice, the kernel K defined by K(z,z) = exp (—%) is called the Gaussian kernel

and is commonly used.

(@] (©]

(6] % 45 o o
o o
o G
° 00p o 000 o> ° ° 000 \ o
° % e © o° ° % e
(¢} @0 ° o © (¢} 00 o
O O
0o ° e 00 @, ° ©0p0 ®
e e Qo0 00 © > © °o 9 g0
6} OO o [6)

Non-linear separability === Use of a kernel mapping ¢ === Decision boundary in the original space

Remark: we say that we use the "kernel trick” to compute the cost function using the kernel
because we actually don’t need to know the explicit mapping ¢, which is often very complicated.
Instead, only the values K (x,z) are needed.

0 Lagrangian — We define the Lagrangian £(w,b) as follows:

l
Llwb) = fw)+ ) Bihi(w)
i=1

Remark: the coefficients B; are called the Lagrange multipliers.

Generative Learning

A generative model first tries to learn how the data is generated by estimating P(z|y), which
we can then use to estimate P(y|x) by using Bayes’ rule.

Gaussian Discriminant Analysis

0O Setting — The Gaussian Discriminant Analysis assumes that y and x|y = 0 and z|y = 1 are

such that:
y ~ Bernoulli(¢)

aly =0~ N(uo,®) | and [aly=1~N(u.%)

O Estimation — The following table sums up the estimates that we find when maximizing the
likelihood:

o~

@ g

1 — > i Ly —jpe®
m 1{ (D=1} =

2 : y'= E:m )
m i=1 i=1 1{y('):j}

(=0,1) b5

] & ) )
il () _ ) () _ T
. E (& = py@) (@ = pye)

=1

Naive Bayes

0O Assumption — The Naive Bayes model supposes that the features of each data point are all
independent:

P(zly) = P(z1,22,..|ly) = P(z1]y) P(z2]y)... = HP(me)
i=1

0 Solutions — Maximizing the log-likelihood gives the following solutions, with & € {0,1},
le[1,L]

#{jlyD =k and 21 =1}
#{jly\9) =k}

and | P(z; =lly=k) =

Ply=k) = — x #{ly@ =k}

Remark: Naive Bayes is widely used for text classification and spam detection.

Tree-based and ensemble methods

These methods can be used for both regression and classification problems.
O CART - Classification and Regression Trees (CART), commonly known as decision trees,
can be represented as binary trees. They have the advantage to be very interpretable.

O Random forest — It is a tree-based technique that uses a high number of decision trees
built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly
uninterpretable but its generally good performance makes it a popular algorithm.

Remark: random forests are a type of ensemble methods.

O Boosting — The idea of boosting methods is to combine several weak learners to form a
stronger one. The main ones are summed up in the table below:
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Adaptive boosting Gradient boosting

- High weights are put on errors to | - Weak learners trained

improve at the next boosting step on remaining errors

- Known as Adaboost

Other non-parametric approaches

O k-nearest neighbors — The k-nearest neighbors algorithm, commonly known as k-NN, is a
non-parametric approach where the response of a data point is determined by the nature of its
k neighbors from the training set. It can be used in both classification and regression settings.

Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the

higher the variance.

(e5) @ @
© @ ©
(9023 (@) fe) o
> je) o) e)
@ %Oo o] O® % ¢ 03 o
o Q® OOOCO o ® OOOCO o ® OOOCO
o Oo%ooo@%@ o %o ooo@ o %o é?ooo
(0N 8 OQ) (OX©] OQ) O OQ)
®o® O ®08 go 8 go
o (80 o (80 (po
k=1 k=3 k=11

Learning Theory

 Union bound — Let Ay, ..., Ax be k events. We have:

‘ P(A1U...UAg) < P(A1) + ... + P(Ay) ‘
oy O (€ ,\
g ( / | \\
AlUA; U4y A 7 A/z de

0 Hoeffding inequality — Let Z1, .., Z,, be m iid variables drawn from a Bernoulli distribution

of parameter ¢. Let ¢ be their sample mean and v > 0 fixed. We have:

[ P16 - 31> ) < 2exp(-292m)

Remark: this inequality is also known as the Chernoff bound.

O Training error — For a given classifier h, we define the training error ?(h), also known as the
empirical risk or empirical error, to be as follows:

m
1
=m D Lnayy)
=1

0 Probably Approximately Correct (PAC) — PAC is a framework under which numerous
results on learning theory were proved, and has the following set of assumptions:

e the training and testing sets follow the same distribution

o the training examples are drawn independently

0 Shattering — Given a set S = {x(l) ,...,:1:(d)}7 and a set of classifiers H, we say that H shatters
S if for any set of labels {y(®), ..., 4(D}, we have:

h(z) = 4@

[shen. vie [,

0 Upper bound theorem — Let H be a finite hypothesis class such that |[H| = k and let  and
the sample size m be fixed. Then, with probability of at least 1 — §, we have:

() < (min e(h)) +2

heH

0 VC dimension — The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis
class H, noted VC(H) is the size of the largest set that is shattered by H.

Remark: the VC dimension of H = {set of linear classifiers in 2 dimensions} is 3.

o o @)
OA OA O\O ®) @

O Theorem (Vapnik) — Let A be given, with VC(H) = d and m the number of training
examples. With probability at least 1 — §, we have:

@< () +o (0 (5) 2 5))

o o) o °
\ \
O\o ©¢ ©¢ © o‘
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Metrics

Given a set of data points {x(l), ey x(m)}, where each z(?) has n features, associated to a set of
outcomes {y(l), ...,y(m)}, we want to assess a given classifier that learns how to predict y from
x.

Classification

In a context of a binary classification, here are the main metrics that are important to track to
assess the performance of the model.

O Confusion matrix — The confusion matrix is used to have a more complete picture when
assessing the performance of a model. It is defined as follows:

Predicted class

+ —

TP FN

+ False Negatives
True Positives
Type II error

Actual class
FP
— | False Positives

TN

True Negatives
Type I error

O Main metrics — The following metrics

are commonly used to assess the performance of
classification models:

0 ROC - The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by
varying the threshold. These metrics are are summed up in the table below:

Metric Formula | Equivalent
s TP e
True Positive Rate | ————— | Recall, sensitivity
TP + FN
TPR
s FP -
False Positive Rate | ————— | 1l-specificity
TN + FP
FPR

0 AUC - The area under the receiving operating curve, also noted AUC or AUROC, is the
area below the ROC as shown in the following figure:

N

AUC

1

ROC

TPR

FPR

Regression

0 Basic metrics — Given a regression model f, the following metrics are commonly used to
assess the performance of the model:

Total sum of squares | Explained sum of squares | Residual sum of squares

m m m

SStot = (v —7)? SSreg = Y _(f(z:) = 7)° SSres = 3 _(ui — f(2:))?

=1 =1 =1

O Coefficient of determination — The coefficient of determination, often noted R? or r?,
provides a measure of how well the observed outcomes are replicated by the model and is defined
as follows:

 SSres
SStot

R?=1

0 Main metrics — The following metrics are commonly used to assess the performance of
regression models, by taking into account the number of variables n that they take into consid-
eration:

Mallow’s Cp AIC BIC Adjusted R?

Metric Formula Interpretation
TP 4+ TN
Accuracy * Overall performance of model
TP + TN + FP + FN
. TP - o
Precision _ How accurate the positive predictions are
TP + FP
TP -
Recall — Coverage of actual positive sample
TP + FN
Sensitivity
Specificit R C f actual ti 1
ecifici _— overage of actual negative sample
P y TN + FP verag u gat1iv p
2TP . .
F1 score _ Hybrid metric useful for unbalanced classes
2TP + FP + FN

SSyes + 2(n + 1)a?

m

2 [(n +2) — Iog(L)]

log(m)(n +2) — 2log(L) | 1

0 -R)m-1)
m—-—n—1
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where L is the likelihood and o2 is an estimate of the variance associated with each response.

Model selection

O Vocabulary — When selecting a model, we distinguish 3 different parts of the data that we
have as follows:

Training set Validation set Testing set

- Model is assessed

- Usually 20% of the dataset
- Also called hold-out

or development set

- Model is trained
- Usually 80% of the dataset

- Model gives predictions
- Unseen data

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen
test set. These are represented in the figure below:

Dataset Unseen data
Train Validation Test

3 Cross-validation — Cross-validation, also noted CV, is a method that is used to select a
model that does not rely too much on the initial training set. The different types are summed
up in the table below:

k-fold Leave-p-out

- Training on k£ — 1 folds and - Training on n — p observations and

assessment on the remaining one | assessment on the p remaining ones

- Generally k£ =5 or 10 - Case p = 1 is called leave-one-out

The most commonly used method is called k-fold cross-validation and splits the training data
into k folds to validate the model on one fold while training the model on the k — 1 other folds,
all of this k times. The error is then averaged over the k folds and is named cross-validation
error.

Validation error Cross-validation error

Fold Dataset

€1

)
b D &

€1+ ...+ e

G o«

Validation

Train

O Regularization — The regularization procedure aims at avoiding the model to overfit the
data and thus deals with high variance issues. The following table sums up the different types
of commonly used regularization techniques:

LASSO Ridge Elastic Net

Tradeoff between variable
selection and small coefficients

- Shrinks coefficients to 0 Makes coefficients smaller

- Good for variable selection

6]y <1 \J 116]]2 < 1 {a

)0l + al|0]3 < 1

o A0]]
A€ER

SN[
AER

o A = il + o]
AER, ae€l0,1]

0 Model selection — Train model on training set, then evaluate on the development set, then
pick best performance model on the development set, and retrain all of that model on the whole
training set.

Diagnostics

0 Bias — The bias of a model is the difference between the expected prediction and the correct
model that we try to predict for given data points.

0 Variance — The variance of a model is the variability of the model prediction for given data
points.

0 Bias/variance tradeoff — The simpler the model, the higher the bias, and the more complex
the model, the higher the variance.

Underfitting Just right Overfitting
- High training error - Training error - Low training error
Symptoms - Training error close | slightly lower than - Training error much
to test error test error lower than test error
- High bias - High variance
® @
(¢
g ®
e &®
Regression o 8 %
(O10)
OO @ @ © ©
90 ©
@
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Classification

Deep learning

Error

Validation

Training

Error

Validation

Epochs

Epochs

Error

Validation

Training

Epochs

Remedies

- Complexify model
- Add more features
- Train longer

- Regularize
- Get more data

O Error analysis — Error analysis is analyzing the root cause of the difference in performance
between the current and the perfect models.

O Ablative analysis — Ablative analysis is analyzing the root cause of the difference in perfor-

mance between the current and the baseline models.
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Cheat Sheet — Regression Analysis

What is Regression Analysis?
Fitting a function f(.) to datapoints y;=f(x;) under some error function. Based on the estimated

function and error, we have the following types of regression

1. Linear Regression:
Fits a

lum )”2

mina 3l =

minimizing the

for each datapoint. f “”e‘”( i) = Po + Bz
2. Polynomial Regression: ming Z”% £2 () 2

Fits a of order k (k+1 unknowns) minimizing

the for each datapoint. FE% (i) = Bo + Brxi + Paxl + ... + Braf

3. Bayesian Regression:
For each datapoint, fits a by

minimizing the

data points x; increases, it converges to point
estimates i.e. n — 00,02 — 0

4. Ridge Regression:
Can fit either a

of the function parameters beta.

5. LASSO Regression:
Can fit either a

ming Z lyi = N (fa(z:),02) |2

Fa(@i) = £ (i) or f4mear (@)

N (/L, 02) — Gaussian with mean p and variance o2

. As the number of

minimizing the
for each datapoint

m k
ming Z ||yz - fﬁ(h)”g + 2572
i—0 j=0

f( ) fPoly( 2) /lgincu’r(xi)
m k

minimizing the the ming > llyi = fa(@)|* + 318
1=0 i=0

for each datapoint fo() = '

fpoly(xi) or féznaar(xz)

of the function parameters beta.

6. Logistic Regression:
Can fit either a

minimizing the for fa(xi) =
each datapoint. The labels y are binary class labels. olt) =

Visual Representation:

Linear Regression

— (1= yi)log (1 — o (fa(:)))

£ () or f57 (@)
1
1+et

ming Z —yilog (o (fa(xs)))

Polynomial Regression Bayesian Linear Regression Logistic Regression

[one]
9o © ©0 ° ® 0000022 COC0CE
° oo g e ° >
o8 %o Og °
ol I o0 >l e o o’ 1 0.8 >
eo0 %o g °°, ooOOOO oo Oooo
o 00, ° 00 oo oo o OOOo
© %0 o _ 0% ©eo R ° 2% o _ eosces w0000 R
X X X X
Summary:
What does it fit? Estimated function Error Function
Linear A line in n dimensions fhnear(z;) = Bo + P ZHU — fal@)*-
7(]

Polynomial A polynomial of order k FP (@) = Bo + Brwi + Box? + ... ;Hu ~falx

Bayesian Linear Gaussian distribution for each point N (fa(@:).0?) Z lly = N (Fa(wi),0?) II*

Ridge Linear /polynomial £ () or fhmear () Z llyi = Fa ()2 +Z 87
i=0 i=0

LASSO Linear /polynomial T2 (@) or e (ay) Z ly: — fa(@ H2+Z 1851
i=0 =0

Logistic Linear/polynomial with sigmoid o(fs(x:)) ’”””Z yilog (o (f3(w:))) = (1 = yi)log (1 = o (fa(w:)))

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial:


https://towardsdatascience.com/a-beginners-guide-to-regression-analysis-in-machine-learning-8a828b491bbf

Cheat Sheet — Regularization in ML

What is Regularization in ML?

* Regularization is an approach to address over-fitting in ML. | . <~ S | DI ¢
* Overfitted model fails to generalize estimations on test data
* When the underlying model to be learned is low bias/high - =
variance, or when we have small amount of data, the Underfitting  Just Right Over-fitting
estimated model is prone to over-fitting. Preferred if size it 9 g
of dataset is small of dataset is large

* Regularization reduces the variance of the model

Types of Regularization: Figure 1. Overfitting

1. Modify the loss function:

L2 Regularization: Prevents the weights from getting too large (defined by L2 norm). Larger

the weights, more complex the model is, more chances of overfitting.
1

model variance

loss = error(y,y)|+ /\Z 6]2» A >0, A o< model bias, X

J
» L1 Regularization: Prevents the weights from getting too large (defined by L1 norm). Larger
the weights, more complex the model is, more chances of overfitting. L1 regularization
introduces sparsity in the weights. It forces more weights to be zero, than reducing the the
average magnitude of all weights

1
loss = error(y,y)|+ AZ 16| A >0, Ao model bias, X\

model variance

j
* Entropy: Used for the models that output probability. Forces the probability distribution
towards uniform distribution.

1
loss = error(p,p)|— A Zﬁilog(ﬁi) A >0, A x model bias, A\ x

model variance

2. Modify data sampling:

* Data augmentation: Create more data from available data by randomly cropping, dilating,
rotating, adding small amount of noise etc.

» K-fold Cross-validation: Divide the data into k groups. Train on (k-1) groups and test on 1
group. Try all k possible combinations.

3. Change training approach:

* Injecting noise: Add random noise to the weights when they are being learned. It pushes the
model to be relatively insensitive to small variations in the weights, hence regularization

* Dropout: Generally used for neural networks. Connections between consecutive layers are
randomly dropped based on a dropout-ratio and the remaining network is trained in the
current iteration. In the next iteration, another set of random connections are dropped.

5-fold cross-validation Original Network Dropout-ratio = 30%
Test Train
Train Test Train
Train Test Train
Train Test Train
Train Test Connections = 16 Active = 11 (70%) Active = 11 (70%)
Figure 2. K-fold CV Figure 3. Drop-out

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial:


https://towardsdatascience.com/types-of-regularization-in-machine-learning-eb5ce5f9bf50

Cheat Sheet — Bias-Variance Tradeoff

What is Bias? bias = E[f'(x)] — f(x)
* Error between average model prediction and ground truth
* The bias of the estimated function tells us the capacity of the underlying model to
predict the values
What is Variance? variance = E [(f’(a:) - IE[f’(:c)])2]
* Average variability in the model prediction for the given dataset
* The variance of the estimated function tells you how much the function can adjust
to the change in the dataset

High Bias s Qverly-simplified Model
ey Under-fitting
—— High error on both test and train data

High Variance — . Overly-complex Model
> QOver-fitting
3 L,ow error on train data and high on test
e Starts modelling the noise in the input

High Bias Low Bias
Low Variance High Variance
Low Bias High Bias A
S
= Minimum Error
5
<
> Bias
2 Variance
Q
—
>
S
g el .
— L —
< 00 oo °© °
~
~ > P >
.20
asi Under-fitting Just Right Over-fitting
Preferred if size Preferred if size
of dataset is small of dataset is large

Bias variance Trade-off
* Increasing bias (not always) reduces variance and vice-versa,
* Error = bias? + variance +irreducible error

* The best model is where the error is reduced.
 Compromise between bias and variance

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial: Click here


https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-and-visualizing-it-with-example-and-python-code-7af2681a10a7

Cheat Sheet — Bayes Theorem and Classifier

What is Bayes’ Theorem?
* Describes the probability of an event, based on prior knowledge of conditions that might be

related to the event.
P(BJ|A) x P(A)
P(B)(evidence)

P(A|B) =
P(A|B)
* How the probability of an event changes when

we have knowledge of another event
—> P(A|B)

I Usually, a better
estimate than P(A)

Example

* Probability of fire P(F) = 1%

* Probability of smoke P(S) = 10%

* Prob of smoke given there is a fire P(S|F) = 90%

* What is the probability that there is a fire given
we see a smoke P(F|S)?

P(S|F) x P(F) 0.9 x 0.01

Posterior
Probability

<

LA

i

(F]5) P(S) 0.1 &
Maximum Aposteriori Probability (MAP) Estimation
The MAP estimate of the random variable y, given that we have observed iid (xi, X2, X3, ... ), i8
given by. We try to accommodate our prior knowledge when estimating.
9 = argmaz, P(y) H P(xz;|y) y that maximizes the product of
MAP

prior and likelihood

Maximum Likelihood Estimation (MLE)
The MAP estimate of the random variable y, given that we have observed iid (xi, X2, X3, ... ), i8
given by. We assume we don’t have any prior knowledge of the quantity being estimated.

g = argmax, | | P(x;ly) y that maximizes only the
VB likelihood
i 1Kel1N00:

MLE is a special case of MAP where our prior is uniform (all values are equally likely)

Naive Bayes’ Classifier (Instantiation of MAP as classifier)
Suppose we have two classes, y=y; and y=y,. Say we have more than one evidence/features (xy,

X9, X3, ... ), using Bayes’ theorem
P(xy,22,23,...|y) X P(y)
P(.Tl, I2,X3, .. )

P(y|lx1,x9,23,...) =

Naive Bayes’ theorem assumes the features (xi, xo, ... ) are i.i.d. i.e P(z1,%2,23,...|y) = HP(azz|y)

P(y)

xl,xZ,x3, .. )

P(y‘xth,x?n' )_pr'L'y

P(y1’$1,$2,$3, 0 o )
P(y2’$1,332,$3, 0 o )

> 1 else y=ys

Source: https://www.cheatsheets.aqeel-anwar.com



Cheat Sheet — Imbalanced Data in Classification

EEn OR A 00A6LE
Green: Label 0 . Correct Predictions
Accuracy =

Total Predictions

Classifier that always predicts label blue yields prediction accuracy of 90%

Accuracy doesn’t always give the correct insight about your trained model

Accuracy: %age correct prediction Correct prediction over total predictions

Precision: Exactness of model From the detected cats, how many were
actually cats

Recall:  Completeness of model Correctly detected cats over total cats

F1 Score: Combines Precision/Recall Harmonic mean of Precision and Recall

Performance metrics associated with Class

One value for entire network
Each class/label has a value

Each class/label has a value
Each class/label has a value

1

(Is your prediction correct?) (What did you predict)

Actual Labels True Negative
1 0 £ s
(Your prediction is correct) (You predicted 0)
0 True False .. .
) . o Precision = =————— False +ve rate = =
§ Positive Positive +i3 +
Prec x Rec TP|
o) TN|
9 F1 score = 2x ( ) Accuracy = .+ .
2 (e = Heo m+E+ I+
o False True
A Negative Negative Specificity = ————— Recall, Sensitivity = —————
TNESFP +
True +ve rate
Possible solutions
1. Data Replication: Replicate the available data until the Blue: Label 1 @A OO AGCT

number of samples are comparable Green: Label 0

2. Synthetic Data: Images: Rotate, dilate, crop, add noise to Blue: Label 1
existing input images and create new data Green: Label 0

000000000
'‘@RhAS00AGLE
:@RAG0AGLE

3. Modified Loss: Modify the loss to reflect greater error when 10SS = @ %1055 gyeen + b * [05Sye @ > b

misclassifying smaller sample set

4. Change the algorithm: Increase the model/algorithm complexity so that the two classes are perfectly

separable (Con: Overfitting)

Increase model

complexity
No straight line (y=ax) passing through origin can perfectly Straight line (y=ax+b) can perfectly separate data.
separate data. Best solution: line y=0, predict all labels blue Green class will no longer be predicted as blue

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial: Click here
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Cheat Sheet — Ensemble Learning in ML

What is Ensemble Learning? Wisdom of the crowd
Combine multiple weak models/learners into one predictive model to reduce bias, variance and/or improve accuracy.

Types of Ensemble Learning: N number of weak learners
1.Bagging: Trains N different weak models (usually of same types — homogenous) with N non-overlapping subset of the

input dataset in parallel. In the test phase, each model is evaluated. The label with the greatest number of predictions is
selected as the prediction. Bagging methods reduces variance of the prediction

2.Boosting: Trains N different weak models (usually of same types — homogenous) with the complete dataset in a
sequential order. The datapoints wrongly classified with previous weak model is provided more weights to that they can
be classified by the next weak leaner properly. In the test phase, each model is evaluated and based on the test error of
each weak model, the prediction is weighted for voting. Boosting methods decreases the bias of the prediction.

3.Stacking: Trains N different weak models (usually of different types — heterogenous) with one of the two subsets of the
dataset in parallel. Once the weak learners are trained, they are used to trained a meta learner to combine their
predictions and carry out final prediction using the other subset. In test phase, each model predicts its label, these set of
labels are fed to the meta learner which generates the final prediction.

The block diagrams, and comparison table for each of these three methods can be seen below.

Ensemble Method — Boosting Ensemble Method — Bagging
Input Dataset Step #1 Input Dataset
Step #1 » Create N subsets ©
ﬁj;lél“t fg"-"l weights | Complete dataset g:::sz@oﬁ:lfm s | Subset #1 | Subset #2 | Subset #3 | Subset #4 |
in the dataset weak model i 1 t
Uniform weights
_________________________________________________________ Step #2
Step #2a Step #2b Brnteiball  Weak Model Weak Model Weak Model Weak Model
Train a weak model Train Weak + Based on the final error on the independent #1 #2 #3 #4
with equal weights to Model #1 trained weak model, calculate a subset, in
all the datapoints scalar alpha. parallel
- Use alpha to increase the weights of
wrongly classified points, and
decrease the weights of correctly T T T T T T T T T T oo oo s s oo T
alphal classified points Step #3
———————————————————————————————— In the test phase, predict from .
each weak model and vote their Voting
Step #3b predictions to get final prediction
Train Weak P
Step #3a rain Weak + Based on the final error on the e
Train a weak model Model #2 trained weak model, caleulate a
with adjusted weights scalar alpha. .
e Y e e + Use alpha to increase the weights of
e e wrongly classified points, and Final Prediction
decrease the weights of correctly
alpha2 Adjusted weights classified points
Train Weak Ensemble Method — Stacklng
Model #3
Step #1
Create 2 subsets from Input Dataset

original dataset, one
for training weak

alpha3 Adjusted weights ‘models and one for

----------------------------------------------------------- meta-model

Subset #1 — Weak Learners | Subset #2 — Meta Learner

Train Weak
Step #(n+1)a Model #4 Step #2

Train a weak model
with adjusted weights
on all the datapoints
in the dataset

Train each weak
model with the
weak learner
dataset,

Train Weak
Model #1

Train Weak
Model #2

Train Weak
Model #3

Train Weak
Model #4

@ Input Dataset

Step #n+2 Subset #1 — Weak Learners Subset #2 — Meta Learner

In the test phase, predict from each
weak model and vote their predictions
weighted by the corresponding alpha to

get final prediction . Step #3
Voting Train a meta-
rnluall  Trained Weak Trained Weak Trained Weak Trained Weak
__________________________________________________________ e e ey Model Model Model Model
wealk models for #1 #2 #3 #4
the Meta Learner
Final Prediction dataset
Parameter Bagging Boosting Stacking
B 3 B B B Meta Model
Focuses on Reducing variance Reducing bias Improving accuracy
Nature of weak . e
. Homogenous Homogenous Heterogenous St 4
learners is ep #

In the test phase, feed the input to the
weak models, collect the output and feed

Weak learners are Si il B ichi . Learned voting it to the meta model. The output of the Final Prediction
imple voting Weighted voting ‘meta model is the final prediction
aggregated by (meta-learner)

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial: Click here
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3.2. Unsupervised learning
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Introduction to Unsupervised Learning

O Motivation — The goal of unsupervised learning is to find hidden patterns in unlabeled data
{z1)....a(m)}.

0 Jensen’s inequality — Let f be a convex function and X a random variable. We have the
following inequality:

E[f(X)] = f(E[X])

Expectation-Maximization

0 Latent variables — Latent variables are hidden/unobserved variables that make estimation
problems difficult, and are often denoted z. Here are the most common settings where there are
latent variables:

Setting Latent variable z z|z Comments
Mixture of k Gaussians Multinomial(¢) N(pj,25) pj ER™ ¢ € RF
Factor analysis N(0,1) N(p+ Az ) u; €R™

0 Algorithm — The Expectation-Maximization (EM) algorithm gives an efficient method at
estimating the parameter 6 through maximum likelihood estimation by repeatedly constructing
a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

e FE-step: Evaluate the posterior probability Qi(z”)) that each data point z(¥) came from

a particular cluster z(9) as follows:

Qi) = P02 0:0)

e M-step: Use the posterior probabilities Qi(z“)) as cluster specific weights on data points

z® to separately re-estimate each cluster model as follows:

Pz 2(1); 9)
0; 7argmax Z/(l Qi (l))log< PREG) dz(®

) o
) @ o
e /
00 o,
to o/
® _e@ @ /@@

,,{OO

) b OOOOO ;O&
% °© oF o0°
®%s

Expectation step

Gaussians initialization === =) Maximization step

==p  Convergence

k-means clustering

We note ¢(®) the cluster of data point i and w; the center of cluster j.

O Algorithm — After randomly initializing the cluster centroids p1,u2,...
algorithm repeats the following step until convergence:

Mk € R™) the k-means

Z Lt =gz

¢® = arg min||z() — will?| and |p; ==

m
J
Z 1{(3(1):3}
i=1

® o o O S)
e o e o e o oo
® e / ) ®
0 o 00 o/ G o oo o
‘oo +OO' o0 oo
o0 © 00+ 00 0 OO+ 00 © 00 o0 © 00
00 o '0' g0 © 90& ©0g0 © Oq.é) ogp © og_@
® 2" o ) @ 90 o °
® + _e () + 0 ° <) 15 )
) .. (@) o® [©] OO o OO

Means initialization === Cluster assignment === Means update ==p  Convergence

0 Distortion function — In order to see if the algorithm converges, we look at the distortion
function defined as follows:

m

Tew) =Y Nz = poo?

=1

Hierarchical clustering

0 Algorithm — It is a clustering algorithm with an agglomerative hierarchical approach that
build nested clusters in a successive manner.

O Types — There are different sorts of hierarchical clustering algorithms that aims at optimizing
different objective functions, which is summed up in the table below:

STANFORD UNIVERSITY
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‘Ward linkage Average linkage Complete linkage

Minimize maximum distance

Minimize average distance
of between cluster pairs

between cluster pairs

Minimize within cluster
distance

Clustering assessment metrics

In an unsupervised learning setting, it is often hard to assess the performance of a model since
we don’t have the ground truth labels as was the case in the supervised learning setting.

O Silhouette coefficient — By noting a and b the mean distance between a sample and all
other points in the same class, and between a sample and all other points in the next nearest
cluster, the silhouette coefficient s for a single sample is defined as follows:

b—a

max(a,b)

O Calinski-Harabaz index — By noting k the number of clusters, B, and W} the between
and within-clustering dispersion matrices respectively defined as

k

T
By = Z et (e = 1) (e = 1)
=1

m
Wi, = Z(J»‘(i) — 1) (@D = )"
i=1
the Calinski-Harabaz index s(k) indicates how well a clustering model defines its clusters, such

that the higher the score, the more dense and well separated the clusters are. It is defined as
follows:

_ Tr(Bx)
Tr(Wy)

N —k
k-1

s(k)

Principal component analysis
It is a dimension reduction technique that finds the variance maximizing directions onto which
to project the data.

O Eigenvalue, eigenvector — Given a matrix A € R”*", X is said to be an eigenvalue of A if
there exists a vector z € R™\{0}, called eigenvector, such that we have:

0 Spectral theorem — Let A € R"X™. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U € R™"*™. By noting A = diag(A1,...,An), we have:

‘ JA diagonal, A =UAUT ‘

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of
matriz A.

0 Algorithm — The Principal Component Analysis (PCA) procedure is a dimension reduction
technique that projects the data on k dimensions by maximizing the variance of the data as
follows:

e Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

:B;Z) < % where | p; = o Z :vy) and
J

1w, «
of = > @) —m)’
i=1

m
1 N (T
e Step 2: Compute ¥ = — g M z(D" € R" " which is symmetric with real eigenvalues.
—_— m
i=1
e Step 3: Compute u,...,up € R™ the k orthogonal principal eigenvectors of ¥, i.e. the
orthogonal eigenvectors of the k largest eigenvalues.

e Step 4: Project the data on spang(ui,...,ur). This procedure maximizes the variance
among all k-dimensional spaces.

X ©
ooo s PC,
o0 © ®
®
Q@ 00 ©
%o © og 09%Pe 9o

Data in feature space

==p  Find principal components === Data in principal components space

Independent component analysis

It is a technique meant to find the underlying generating sources.

0 Assumptions — We assume that our data x has been generated by the n-dimensional source
vector s = (s1,...,5n), where s; are independent random variables, via a mixing and non-singular
matrix A as follows:

r = As

The goal is to find the unmixing matrix W = A~! by an update rule.

0 Bell and Sejnowski ICA algorithm — This algorithm finds the unmixing matrix W by
following the steps below:

o Write the probability of z = As = W15 as:

n

p(@) = [ [ pswla) - W]

i=1
« Write the log likelihood given our training data {x<i),i € [1,m]} and by noting g the
sigmoid function as:

m

W) = Z

i=1

> tog (o (] o) ) +log W]
j=1
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Therefore, the stochastic gradient ascent learning rule is such that for each training example

(| we update W as follows:

W+—W+a

1-— 2g(wfx(i>)
1 —2g(wlz()

1 - 2g(wTa(®)

oK L wT)-t

https://stanford.edu/~shervine

STANFORD UNIVERSITY

FaLL 2018


https://stanford.edu/~shervine

Cheat Sheet — PCA Dimensionality Reduction

What is PCA?

* Based on the dataset find a new set of orthogonal feature vectors in such a way that the
data spread is maximum in the direction of the feature vector (or dimension)

* Rates the feature vector in the decreasing order of data spread (or variance)

* The datapoints have maximum variance in the first feature vector, and minimum variance
in the last feature vector

* The variance of the datapoints in the direction of feature vector can be termed as a
measure of information in that direction.

Steps X —mean(X)

1. Standardize the datapoints Xnew = std(X)

2. Find the covariance matrix from the given datapoints Cli, j] = cov(zs, ;)
3. Carry out eigen-value decomposition of the covariance matrix C=vsy-1
4. Sort the eigenvalues and eigenvectors Seort = 50rt(E) Viors = s0rt(V, Syors)

Dimensionality Reduction with PCA

* Keep the first m out of n feature vectors rated by PCA. These m vectors will be the best m
vectors preserving the maximum information that could have been preserved with m
vectors on the given dataset

Steps:

1. Carry out steps 1-4 from above

2. Keep first m feature vectors from the sorted eigenvector matrix Vicducea = V[:,0 2 m]

3. Transform the data for the new basis (feature vectors) Xreduced = Xnew X Vreduced

4. The importance of the feature vector is proportional to the magnitude of the eigen value

Figure 1 Figure 2
a
A = ®_ O A
B o % %
9 = 0 %% % ° g
2 $ 0 @0 @ E
5 g © o OO [ 3
. g %@ o o =
> 3 ® OO 6)
=] e@
N . e
F2 F1 Feature # 2 (F2) F2 Fl
Figure 3 Figure 1: Datapoints with feature vectors as
x and y-axis
a . . . .
Figure 2: The cartesian coordinate system is
8 rotated to maximize the standard deviation
£ along any one axis (new feature # 2)
> Figure 3: Remove the feature vector with
minimum standard deviation of datapoints
—

F2 (new feature # 1) and project the data on
new feature # 2

Source: https://www.cheatsheets.aqeel-anwar.com
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Neural Networks

Neural networks are a class of models that are built with layers. Commonly used types of neural
networks include convolutional and recurrent neural networks.

0 Architecture — The vocabulary around neural networks architectures is described in the
figure below:

-5;
ole

W

i
71
.‘
I\
oo

.}\g
4G
QS
D%

23

Input layer

Hidden layer k

Hidden layer 1 Output layer

By noting ¢ the i*" layer of the network and j the j** hidden unit of the layer, we have:

i T i
z][.] :w;] x+b£.]

where we note w, b, z the weight, bias and output respectively.

O Activation function — Activation functions are used at the end of a hidden unit to introduce
non-linear complexities to the model. Here are the most common ones:

Sigmoid Tanh ReLU Leaky ReLU
1 e* —e ?
g(z) = Ttrez g(z) = @ te-z 9(2) = max(0,2) 9(z) = max(ez,z)

with e < 1

O Cross-entropy loss — In the context of neural networks, the cross-entropy loss L(z,y) is
commonly used and is defined as follows:

L(z) = — [y log(2) + (1 — ) log(1 z)]

O Learning rate — The learning rate, often noted 7, indicates at which pace the weights get
updated. This can be fixed or adaptively changed. The current most popular method is called
Adam, which is a method that adapts the learning rate.

O Backpropagation — Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to weight w is computed using chain rule and is of the following form:

OL(z,y) _ OL(zy) o da « 0z
ow  da 0z Ow
As a result, the weight is updated as follows:
OL(zy)

w%wfnai
w

0 Updating weights — In a neural network, weights are updated as follows:
e Step 1: Take a batch of training data.
e Step 2: Perform forward propagation to obtain the corresponding loss.
« Step 3: Backpropagate the loss to get the gradients.

o Step 4: Use the gradients to update the weights of the network.

O Dropout — Dropout is a technique meant at preventing overfitting the training data by
dropping out units in a neural network. In practice, neurons are either dropped with probability
p or kept with probability 1 — p.

Convolutional Neural Networks

O Convolutional layer requirement — By noting W the input volume size, F' the size of the
convolutional layer neurons, P the amount of zero padding, then the number of neurons N that
fit in a given volume is such that:

W - F+42P
N S

N +1

0 Batch normalization — It is a step of hyperparameter v, 8 that normalizes the batch {z;}.
By noting up, 0]23 the mean and variance of that we want to correct to the batch, it is done as
follows:

Zi — KB

1/0’%-‘1—6

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

Ti <7

+8
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Recurrent Neural Networks

0 Types of gates — Here are the different types of gates that we encounter in a typical recurrent
neural network:

Input gate Forget gate Output gate Gate

Write to cell or not? | Erase a cell or not? | Reveal a cell or not?

How much writing?

O LSTM - A long short-term memory (LSTM) network is a type of RNN model that avoids
the vanishing gradient problem by adding ’forget’ gates.

Reinforcement Learning and Control
The goal of reinforcement learning is for an agent to learn how to evolve in an environment.

O Markov decision processes — A Markov decision process (MDP) is a 5-tuple (S,A4,{Psa },7,R)
where:

e S is the set of states

e A is the set of actions

e {Ps.} are the state transition probabilities for s € S and a € A

e v €0,1] is the discount factor

e R:SxA— Ror R:S — R is the reward function that the algorithm wants to

maximize

0 Policy — A policy 7 is a function 7 : S — A that maps states to actions.

Remark: we say that we execute a given policy  if given a state s we take the action a = m(s).

0 Value function — For a given policy 7 and a given state s, we define the value function V'™
as follows:

V™(s) = E[R(so) +vR(s1) + 'y2R(82) + ...|so = s,

0 Bellman equation — The optimal Bellman equations characterizes the value function 7
of the optimal policy 7*:

¥ _ / T
VT (s) = R(s) +maxy Y Poa(s)VT ()
s'es

Remark: we note that the optimal policy ™ for a given state s is such that:

7*(s) = argmax Z P (s V*(s)
acA ves

O Value iteration algorithm — The value iteration algorithm is in two steps:

o We initialize the value:

o We iterate the value based on the values before:

g — NY/ (!
Vigi(s) = R(s) + max | ) APua(s)Vi(s")
s’'eS

0 Maximum likelihood estimate — The maximum likelihood estimates for the state transition
probabilities are as follows:

__ #times took action a in state s and got to s’

Psa(sl)

#times took action a in state s

0 Q-learning — Q-learning is a model-free estimation of @, which is done as follows:

Q(s,a) + Q(s,a) + [R(aa,s') + "/n}la;X Q(s',a") — Q(aa)}
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1 Convolutional Neural Networks

1.1 Overview

0 Architecture of a traditional CNN — Convolutional neural networks, also known as CNNs,
are a specific type of neural networks that are generally composed of the following layers:

Input image

Convolutions Pooling

Fully Connected

The convolution layer and the pooling layer can be fine-tuned with respect to hyperparameters
that are described in the next sections.

1.2 Types of layer

0 Convolutional layer (CONYV) — The convolution layer (CONV) uses filters that perform
convolution operations as it is scanning the input I with respect to its dimensions. Its hyperpa-
rameters include the filter size F' and stride S. The resulting output O is called feature map or

activation map.

Remark: the convolution step can be generalized to the 1D and 3D cases as well.

O Pooling (POOL) — The pooling layer (POOL) is a downsampling operation, typically applied
after a convolution layer, which does some spatial invariance. In particular, max and average
pooling are special kinds of pooling where the maximum and average value is taken, respectively.
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Max pooling Average pooling
Each pooling operation selects the Each pooling operation averages
Purpose . . .

maximum value of the current view | the values of the current view
Illustration

- Preserves detected features - Downsamples feature map
Comments R

- Most commonly used - Used in LeNet

0 Fully Connected (FC) — The fully connected layer (FC) operates on a flattened input where
each input is connected to all neurons. If present, FC layers are usually found towards the end

of CNN architectures and can be used to optimize objectives such as class scores.

1.3 Filter hyperparameters

The convolution layer contains filters for which it is important to know the meaning behind its

hyperparameters.

0 Dimensions of a filter — A filter of size F' x F' applied to an input containing C' channels is
a F' X F x C volume that performs convolutions on an input of size I X I x C' and produces an

output feature map (also called activation map) of size O x O X 1.

F

—_— F
N
- -

Remark: the application of K filters of size ' X F results in an output feature map of size

Ox0OxK.

O Stride — For a convolutional or a pooling operation, the stride S denotes the number of pixels

Filter 1

Filter 2

by which the window moves after each operation.

Filter K

S S

D —

CH (7] EEEEN

O Zero-padding — Zero-padding denotes the process of adding P zeroes to each side of the
boundaries of the input. This value can either be manually specified or automatically set through
one of the three modes detailed below:

Valid Same Full
I
_ | sr&1-1+F-s
Potare = \‘ 2 Pstart € HO,F - 1]]
Value P=0 G111 1ip_g
Popg = [_fhu-l Poa=F—1
Illustration g ﬂ
. - Maximum padding
- No padding - Padding such that feature such that end
. . I .
o - Drops last map size has size ’V§—‘ con\{?lglltlonshari .
urpose convolution if _ Output size is applie . on the limits
. . R . of the input
dimensions do not | mathematically convenient Filter *sees’ the input
match - Also called ’half’ padding P
end-to-end

1.4 Tuning hyperparameters

0O Parameter compatibility in convolution layer — By noting I the length of the input
volume size, F' the length of the filter, P the amount of zero padding, S the stride, then the
output size O of the feature map along that dimension is given by:

fo I_F+P?St'art+Pend +1
Psgart 1 Pena
Pstar o
tart I TTTTTTT
EE: . F 5 |
I T = 0] . I
r ] ‘;‘ , i | I
Pena 1
Input Filter Output

Remark: often times, Psiart = Pepg = P, in which case we can replace Psiart + Peng by 2P in
the formula above.
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0 Understanding the complexity of the model — In order to assess the complexity of a ReLU Leaky ReLU ELU
model, it is often useful to determine the number of parameters that its architecture will have.
In a given layer of a convolutional neural network, it is done as follows: 9(2) = max(0,2) g9(z) = max(ez,z) g9(z) = max(a(e* — 1),z)
’ with e < 1 with a < 1
CONV POOL FC
F F 1 1 1
Ilustration r x K F|| max 0 T 0 T 0 T
®C Nin Nout
I t si IxIxC IxIxC Ni
nput size m Non-linearity complexities | Addresses dying ReLU Diff tiabl h
. ifferentiable everywhere
Output size OxOxK Ox0OxC Nout biologically interpretable issue for negative values Y
Number of
FxFxC+1)- K 0 Ni 1) x N,
parameters ( +1) (Nin +1) out 0 Softmax — The softmax step can be seen as a generalized logistic function that takes as input
- a vector of scores x € R™ and outputs a vector of output probability p € R™ through a softmax
- One bias parameter - Input is flattened function at the end of the architecture. It is defined as follows:
per filter - Pooling operation - One bias parameter
i er neuron
Remarks - In most cases, S < F done channel-wise P P evi
A hoi - The number of FC p= where | p; =
- N n
common choice - In most cases, S = F' | neurons is free of Pn ,
for K is 2C . E e%i
structural constraints
j=1

O Receptive field — The receptive field at layer k is the area denoted Ry X Ry of the input
that each pixel of the k-th activation map can ’see’ By calling F) the filter size of layer j and 1.6 Object detection
S; the stride value of layer ¢ and with the convention Sy = 1, the receptive field at layer k can

be computed with the formula: 0 Types of models — There are 3 main types of object recognition algorithms, for which the

nature of what is predicted is different. They are described in the table below:

k j—1
Re=1+> (B -D]]s: P
j=1 i—0 Image classification Classification Detection

w. localization

In the example below, we have F; = F» = 3and S; = So = 1, which gives Ro = 142 - 142 - 1 = Toddy bear
5.

Teddy bear Teddy bear

—_— E —_ u - Classifies a picture - Detects object in a picture | - Detects up to several objects

- Predicts probability of in a picture
- Predicts probability | object and where it is - Predicts probabilities of objects
of object located and where they are located
Traditional CNN Simplified YOLO, R-CNN YOLO, R-CNN

1.5 Commonly used activation functions

0 Rectified Linear Unit — The rectified linear unit layer (ReLU) is an activation function ¢ [ Detection — In the context of object detection, different methods are used depending on
that is used on all elements of the volume. It aims at introducing non-linearities to the network. whether we just want to locate the object or detect a more complex shape in the image. The
Its variants are summarized in the table below: two main ones are summed up in the table below:
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Bounding box detection Landmark detection

. - Detects a shape or characteristics of
Detects the part of the image where

bject (e.g.
the object is located an object (e.g. eyes)

- More granular

(U1, V)
br, (l4z, lay)
(52,0, (Ine by ) oz L)

(I, l2y)
(L7, lry)
(I, lsy)

(l6z»ly) (loa, loy)

Box of center (bz,by), height by,

and width by, Reference points (l1z,l1y), ---,(Ina,lny)

0 Intersection over Union — Intersection over Union, also known as IoU, is a function that
quantifies how correctly positioned a predicted bounding box B, is over the actual bounding
box Bg. It is defined as:

Bp N Ba

oU(Bp,Ba) = £=-5~
P a

10U(B,, By) = 0.1

10U(B,, B) = 0.5 10U(B,, B,) = 0.9

Remark: we always have IoU € [0,1]. By convention, a predicted bounding box By is considered
as being reasonably good if IoU(By,Ba) > 0.5.

0 Anchor boxes — Anchor boxing is a technique used to predict overlapping bounding boxes.
In practice, the network is allowed to predict more than one box simultaneously, where each box
prediction is constrained to have a given set of geometrical properties. For instance, the first
prediction can potentially be a rectangular box of a given form, while the second will be another
rectangular box of a different geometrical form.

0 Non-max suppression — The non-max suppression technique aims at removing duplicate
overlapping bounding boxes of a same object by selecting the most representative ones. After
having removed all boxes having a probability prediction lower than 0.6, the following steps are
repeated while there are boxes remaining:

e Step 1: Pick the box with the largest prediction probability.

e Step 2: Discard any box having an IoU > 0.5 with the previous box.

0.9978 [ i

Teddy bear

Box selection of
==>  maximum probability

Overlap removal

- of same class

-—

Final bounding boxes

Box predictions

0 YOLO — You Only Look Once (YOLO) is an object detection algorithm that performs the
following steps:

e Step 1: Divide the input image into a G x G grid.

e Step 2: For each grid cell, run a CNN that predicts y of the following form:

T
Y= [Pebubybnbuwcricz, ey .| € REXGHFX(EE)

repeated k times

where pc is the probability of detecting an object, bz,by,bp,bw are the properties of the
detected bouding box, c1,...,cp is a one-hot representation of which of the p classes were
detected, and k is the number of anchor boxes.

e Step 3: Run the non-max suppression algorithm to remove any potential duplicate over-
lapping bounding boxes.

Teddy bear

Original image === Division in G' X G grid s= Bounding box prediction ===y Non-max suppression
Remark: when p. = 0, then the network does not detect any object. In that case, the corre-
sponding predictions by, ...,cp have to be ignored.

0 R-CNN — Region with Convolutional Neural Networks (R-CNN) is an object detection algo-
rithm that first segments the image to find potential relevant bounding boxes and then run the
detection algorithm to find most probable objects in those bounding boxes.

Original image — Segmentation ==p Bounding box prediction ss=p Non-max suppression

Remark: although the original algorithm is computationally expensive and slow, newer archi-
tectures enabled the algorithm to run faster, such as Fast R-CNN and Faster R-CNN.
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1.6.1 Face verification and recognition

0 Types of models — Two main types of model are summed up in table below:

Face verification Face recognition

- Is this one of the K persons in the database?

- One-to-many lookup
i 2
J

- Is this the correct person?

- One-to-one lookup

7\ N
\7 ‘\X/

Reterence i parabase - s
D 1S

0 One Shot Learning — One Shot Learning is a face verification algorithm that uses a limited
training set to learn a similarity function that quantifies how different two given images are. The
similarity function applied to two images is often noted d(image 1,image 2).

Query Query

0 Siamese Network — Siamese Networks aim at learning how to encode images to then quantify
how different two images are. For a given input image (), the encoded output is often noted

as f(z(¥).

O Triplet loss — The triplet loss ¢ is a loss function computed on the embedding representation
of a triplet of images A (anchor), P (positive) and N (negative). The anchor and the positive
example belong to a same class, while the negative example to another one. By calling o € Rt
the margin parameter, this loss is defined as follows:

| £(4,P,N) = max (d(4,P) — d(AN) + a,0) |

1.6.2 Neural style transfer

0O Motivation — The goal of neural style transfer is to generate an image G based on a given
content C' and a given style S.

Content C' Style S

Generated image G

O Activation — In a given layer [, the activation is noted all and is of dimensions Ny X Ny X Ne

0 Content cost function — The content cost function Jeontent (C,G) is used to determine how
the generated image G differs from the original content image C. It is defined as follows:

Jeontent (C,G) = %Hall](C) MU CIT

0 Style matrix — The style matrix Gl of a given layer I is a Gram matrix where each of its

]
k/
activations all as follows:

elements GECZ quantifies how correlated the channels k and k' are. It is defined with respect to

Rl i

H w
[ _ i1
Ghpr = Z Z Y

i=1 j=1

Remark: the style matriz for the style image and the generated image are noted GU(S) and
GU(G) respectively.

O Style cost function — The style cost function Jsy16(S,G) is used to determine how the
generated image G differs from the style S. It is defined as follows:

1 1 - 2
T (5.6) = ————||GHE) — g2, = 3 (Gmgm _GmgG))
style( ) (annwnc)z H HF (2anwnc)2 kk kk
k,k’=1

0 Overall cost function — The overall cost function is defined as being a combination of the
content and style cost functions, weighted by parameters a,f3, as follows:

J(G) = aJcontent(CvG) + BJstyle(SaG)

Remark: a higher value of o will make the model care more about the content while a higher
value of B will make it care more about the style.

1.6.3 Architectures using computational tricks

0 Generative Adversarial Network — Generative adversarial networks, also known as GANS,
are composed of a generative and a discriminative model, where the generative model aims at
generating the most truthful output that will be fed into the discriminative which aims at
differentiating the generated and true image.
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Real

—  Real-world image  —

Training set

Discriminator —_—

Generator
Fake

Remark: use cases using variants of GANs include text to image, music generation and syn-
thesis.

0 ResNet — The Residual Network architecture (also called ResNet) uses residual blocks with a
high number of layers meant to decrease the training error. The residual block has the following
characterizing equation:

all+2] = g(all 4 21+2])

O Inception Network — This architecture uses inception modules and aims at giving a try
at different convolutions in order to increase its performance. In particular, it uses the 1 x 1
convolution trick to lower the burden of computation.

2 Recurrent Neural Networks

2.1 Overview

O Architecture of a traditional RNN — Recurrent neural networks, also known as RNNs;
are a class of neural networks that allow previous outputs to be used as inputs while having
hidden states. They are typically as follows:

( - ( D) e D) e N
<1> <2> <t> <t+1>
‘ Y l Y ‘ Y Y J
- SN J J \ .
( \ D ) a<t—1> s 2 (L<t> s 2} a<t+1>
a<0> — — — ‘
\ & J = ) \ ) \ )
<1> x<2> <t> 3:<t+1>

For each timestep ¢, the activation a<!> and the output y<!> are expressed as follows:

a<t” = gl(Waaa<t71> + Wazx<t> + ba) ‘ and ‘y<t> = gg(Wyaa<t> + by)

where Waz, Waa, Wya, ba, by are coefficients that are shared temporally and g1, g2 activation
functions

The pros and cons of a typical RNN architecture are summed up in the table below:

Advantages Drawbacks

- Possibility of processing input of any length | - Computation being slow

- Model size not increasing with size of input | - Difficulty of accessing information
from a long time ago

- Cannot consider any future input

- Computation takes into account
historical information

- Weights are shared across time for the current state

0O Applications of RNNs — RNN models are mostly used in the fields of natural language
processing and speech recognition. The different applications are summed up in the table below:
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Type of RNN Illustration Example

One-to-one Tt

Traditional neural network

One-to-many

Music generation
T, =1,T, >1

Many-to-one ’ - 1

== ‘*. - Sentiment classification
T, >1,T, =1 t 1 !
,L.<l> 1:<2> 1.<T-,>
‘/y<1> ‘,@<2> g<Tu;
Many-to-many I 1 1
a<"> — - ‘%. -] Name entity recognition
Ty =Ty t t t
I<1> CI,‘<2> I<'T‘l>
o e
Many-to-many o o o T
as?> |- - - .*‘ - *‘ Machine translation
Ty # Ty ot
]:<1> J’,<Tz>

O Loss function — In the case of a recurrent neural network, the loss function £ of all time
steps is defined based on the loss at every time step as follows:

T’y
LGy =) LG <)
t=1

0 Backpropagation through time — Backpropagation is done at each point in time. At
timestep T, the derivative of the loss £ with respect to weight matrix W is expressed as follows:

2.2 Handling long term dependencies

0 Commonly used activation functions — The most common activation functions used in
RNN modules are described below:

Sigmoid Tanh RELU
o) = T o) = 9(2) = max(0,2)
1 1
—4 0, 4: 0 1
-1

O Vanishing/exploding gradient — The vanishing and exploding gradient phenomena are
often encountered in the context of RNNs. The reason why they happen is that it is difficult
to capture long term dependencies because of multiplicative gradient that can be exponentially
decreasing/increasing with respect to the number of layers.

0O Gradient clipping — It is a technique used to cope with the exploding gradient problem
sometimes encountered when performing backpropagation. By capping the maximum value for
the gradient, this phenomenon is controlled in practice.

‘ ‘Vﬂ |clippcd

VL]

0 Types of gates — In order to remedy the vanishing gradient problem, specific gates are used
in some types of RNNs and usually have a well-defined purpose. They are usually noted I" and
are equal to:

I =o(Wz<t> + Ua<!"1> +b)

where W, U, b are coefficients specific to the gate and o is the sigmoid function. The main ones
are summed up in the table below:
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Type of gate Role Used in
Update gate T'y, How much past should matter now? | GRU, LSTM
Relevance gate I'y Drop previous information? GRU, LSTM
Forget gate I'y Erase a cell or not? LSTM
Output gate I’y How much to reveal of a cell? LSTM

2.3 Learning word representation

In this section, we note V' the vocabulary and |V| its size.

2.3.1 Motivation and notations

0 GRU/LSTM - Gated Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM)
deal with the vanishing gradient problem encountered by traditional RNNs, with LSTM being
a generalization of GRU. Below is a table summing up the characterizing equations of each

architecture:
Gated Recurrent Unit Long Short-Term Memory
(GRU) (LSTM)
e<t> tanh(We[ly % a<t=1> 2<t>] + b.) | tanh(W[['y x a<t—1> 2<t>] 4 b.)
c<t> Fu*5<t> +(1 _Fu)*c<t71> Fu*6<t> +Ff*c<t71>
a<t> e<t> Ty % c<t>
e<t-1> [ | O <t> o<t=1> | O\, <t
F<t> LL F<t>
N
ependencies o<t-1> — L <> o<1 “\t t t (T,) L gt
<> <>

Remark: the sign x denotes the element-wise multiplication between two vectors.

 Variants of RINNs — The table below sums up the other commonly used RNN architectures:

Bidirectional Deep
(BRNN) (DRNN)
( Z;,<1>“ /§/<2>‘ ‘ ;,j<c>\‘
’ﬁ<1> ‘/@<2> ’g<T> \ 1 ( T /‘ T oY
= & awl L[
PN SN 7 root [
| J I B
=-0)-- -0
” - = ’ r P t
‘z<l>‘ /z<2> I<T>‘ ‘a[l]<0>"_.‘\ _>~7/‘_. ﬁ‘ ‘_’
D R B ot
z<1> <2> x<">

0 Representation techniques — The two main ways of representing words are summed up in
the table below:

1-hot representation ‘Word embedding

teddy bear teddy bear

soft

book

- Noted oy
- Naive approach, no similarity information

- Noted eq
- Takes into account words similarity

0O Embedding matrix — For a given word w, the embedding matrix E is a matrix that maps
its 1-hot representation oy, to its embedding e,, as follows:

Remark: learning the embedding matriz can be done using target/context likelihood models.

2.3.2 'Word embeddings

0 Word2vec — Word2vec is a framework aimed at learning word embeddings by estimating the
likelihood that a given word is surrounded by other words. Popular models include skip-gram,
negative sampling and CBOW.

_»o soft

. . teddy(i);ar
0000

Persian ﬁoetry

Train network on proxy task

==p  Extract high-level representation w==sp  Compute word embeddings

0 Skip-gram — The skip-gram word2vec model is a supervised learning task that learns word
embeddings by assessing the likelihood of any given target word ¢ happening with a context
word c¢. By noting 6; a parameter associated with ¢, the probability P(t|c) is given by:
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exp(@?ec)
V]

Z eXp(GJTec)

Jj=1

P(tle) =

Remark: summing over the whole vocabulary in the denominator of the softmaz part makes
this model computationally expensive. CBOW is another word2vec model using the surrounding
words to predict a given word.

O Negative sampling — It is a set of binary classifiers using logistic regressions that aim at
assessing how a given context and a given target words are likely to appear simultaneously, with
the models being trained on sets of k negative examples and 1 positive example. Given a context
word ¢ and a target word ¢, the prediction is expressed by:

P(y =1|et) = o (6] ec)

Remark: this method is less computationally expensive than the skip-gram model.

0 GloVe — The GloVe model, short for global vectors for word representation, is a word em-
bedding technique that uses a co-occurence matrix X where each X; ; denotes the number of
times that a target ¢ occurred with a context j. Its cost function J is as follows:

V]
JO) = 5 3 FX)0F e + b+ — log(X:y))?

i,j=1

here f is a weighting function such that X; ; = 0 = f(X; ;) =0.
(final)

Given the symmetry that e and 6 play in this model, the final word embedding e,
by:

is given

fina. ew + Ow
(g _ ot 0o

Remark: the individual components of the learned word embeddings are not necessarily inter-
pretable.

2.4 Comparing words

0 Cosine similarity — The cosine similarity between words wj and ws is expressed as follows:

w1 w
similarity = et S S cos(0)
[[wal] [Jwa]|
Remark: 0 is the angle between words wy and wa.
w1

w2

0 t-SNE - ¢-SNE (¢-distributed Stochastic Neighbor Embedding) is a technique aimed at re-
ducing high-dimensional embeddings into a lower dimensional space. In practice, it is commonly
used to visualize word vectors in the 2D space.

soft
o hqg
teddy bear
- kind cute
entertaining &) o
literature  knowledge ° childhood
a A o adorable
Shahnameh lovergble ©
o g
© culture poem
bo(ok - reatjing/

2.5 Language model
0 Overview — A language model aims at estimating the probability of a sentence P(y).

O n-gram model — This model is a naive approach aiming at quantifying the probability that
an expression appears in a corpus by counting its number of appearance in the training data.

O Perplexity — Language models are commonly assessed using the perplexity metric, also
known as PP, which can be interpreted as the inverse probability of the dataset normalized by
the number of words T. The perplexity is such that the lower, the better and is defined as
follows:

T . T
PP = H -
VI (t) . ~(t)

t=1 Zj:l Yj Yj

Remark: PP is commonly used in t-SNE.

2.6 Machine translation

0 Overview — A machine translation model is similar to a language model except it has an
encoder network placed before. For this reason, it is sometimes referred as a conditional language
model. The goal is to find a sentence y such that:

P(y<t>,..y<Tv”|z)

y = arg max

T
y<1> . y<Ty>

0 Beam search — It is a heuristic search algorithm used in machine translation and speech
recognition to find the likeliest sentence y given an input x.

o Step 1: Find top B likely words y<!>

« Step 2: Compute conditional probabilities y<F>|z,y<1> .. y<k-1>
« Step 3: Keep top B combinations z,y<1>...,y<k>
@<1> §<1> Q<k>F i
( _ \ _ ( J
— ——‘ ‘ a‘ ‘a, — ‘ §<Tv>|=|<EO0S >
2<T=>
Compute conditional probabilities  Keep top B combinations
Find top B likely words y<l>-> <pk> <1> P <k—1> w=p p 21> <k>  w—p End process at a
Y lz,y sy z,y s Y stop word
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Remark: if the beam width is set to 1, then this is equivalent to a naive greedy search.

0 Beam width — The beam width B is a parameter for beam search. Large values of B yield
to better result but with slower performance and increased memory. Small values of B lead to
worse results but is less computationally intensive. A standard value for B is around 10.

0 Length normalization — In order to improve numerical stability, beam search is usually ap-
plied on the following normalized objective, often called the normalized log-likelihood objective,
defined as:

T’!J
1
Objective = 72 > log [p(y<t>lw,y<1>, ...,y<t‘1>)]
Y=t

Remark: the parameter v can be seen as a softener, and its value is usually between 0.5 and 1.

O Error analysis — When obtaining a predicted translation @\that is bad, one can wonder why o Attention/weight — The am/ount of attention that the output y
activation a<* > is given by a<** > computed as follows:

exp(e<t,t’>)

we did not get a good translation y* by performing the following error analysis:

P(y*|z) < P(ylz)
RNN faulty

Case P(y*|z) > P(y|z)

Root cause Beam search faulty

- Try different architecture

Remedies Increase beam width | - Regularize

- Get more data

0 Bleu score — The bilingual evaluation understudy (bleu) score quantifies how good a machine
translation is by computing a similarity score based on n-gram precision. It is defined as follows:

n
1
bleu score = exp | — E Pk
n
k=1

where py, is the bleu score on n-gram only defined as follows:

E countlip (n-gram)

n-gramey

Z count(n-gram)

n-gramey

Pn =

Remark: a brevity penalty may be applied to short predicted translations to prevent an artificially
inflated bleu score.

2.7 Attention

0 Attention model — This model allows an RNN to pay attention to specific parts of the input

that is considered as being important, which improves the performance of the resulting model
’

in practice. By noting a<%* > the amount of attention that the output y<*> should pay to the

activation a<t'> and ¢<*> the context at time ¢, we have:

! ’ !
c<t> — § a<t:t' > <t’> with E a<tt’™> —1
t’ t’

A cute teddy bear is reading Persian literature

Remark: the attention scores are commonly used in image captioning and machine translation.

A cute teddy bear is reading Persian literature

<t>

’
a<tt'> _
Ty

E exp(e<t,t”>)

=1

Remark: computation complexity is quadratic with respect to Ty.

should pay to the
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3 Deep Learning Tips and Tricks

3.1 Data processing

0O Data augmentation — Deep learning models usually need a lot of data to be properly trained.
It is often useful to get more data from the existing ones using data augmentation techniques.
The main ones are summed up in the table below. More precisely, given the following input
image, here are the techniques that we can apply:

Original

Flip

Rotation

Random crop

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

- Rotation with

a slight angle

- Simulates incorrect
horizon calibration

- Random focus
on one part, of
the image

- Several random
crops can be
done in a row

Color shift

Noise addition

Information loss

Contrast change

- Nuances of RGB
is slightly changed
- Captures noise
that can occur
with light exposure

- Addition of noise
- More tolerance to
quality variation of
inputs

- Parts of image
ignored

- Mimics potential
loss of parts of image

- Luminosity changes
- Controls difference
in exposition due

to time of day

0 Batch normalization — It is a step of hyperparameter ~, 3 that normalizes the batch {z;}.
By noting up, a'% the mean and variance of that we want to correct to the batch, it is done as

follows:

Ti < Y

Ti — KB

\/0']234-6

+8

3.2 Training a neural network

3.2.1 Definitions

O Epoch — In the context of training a model, epoch is a term used to refer to one iteration
where the model sees the whole training set to update its weights.

0O Mini-batch gradient descent — During the training phase, updating weights is usually not
based on the whole training set at once due to computation complexities or one data point due
to noise issues. Instead, the update step is done on mini-batches, where the number of data
points in a batch is a hyperparameter that we can tune.

O Loss function — In order to quantify how a given model performs, the loss function L is
usually used to evaluate to what extent the actual outputs y are correctly predicted by the
model outputs z.

O Cross-entropy loss — In the context of binary classification in neural networks, the cross-
entropy loss L(z,y) is commonly used and is defined as follows:

Lizw) = — [y log(2) + (1 — ) log(1 — 2)

3.2.2 Finding optimal weights

O Backpropagation — Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to each weight w is computed using the chain rule.

oL  Of(x)
df(x) O=x

of (x)

T fx)
Using this method, each weight is updated with the rule:
OL(zy)

ow

w4 W —«

0O Updating weights — In a neural network, weights are updated as follows:

e Step 1: Take a batch of training data and perform forward propagation to compute the
loss.

o Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.

o Step 3: Use the gradients to update the weights of the network.

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

@ Forward propagation

@ Backpropagation

@ Weights update

STANFORD UNIVERSITY 11

WINTER 2019



CS 230 — DEEP LEARNING

SHERVINE AMIDI & AFSHINE AMIDI

3.3 Parameter tuning

3.3.1 Weights initialization

O Xavier initialization — Instead of initializing the weights in a purely random manner, Xavier
initialization enables to have initial weights that take into account characteristics that are unique
to the architecture.

0 Transfer learning — Training a deep learning model requires a lot of data and more impor-
tantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets
that took days/weeks to train, and leverage it towards our use case. Depending on how much
data we have at hand, here are the different ways to leverage this:

Training size Illustration Explanation

B 1 1
Small reezes all layers,

00O

trains weights on softmax

Medium

00O

Freezes most layers,
trains weights on last
layers and softmax

Q000 | 0000

Trains weights on layers
Large and softmax by initializing

weights on pre-trained ones

Method Explanation Update of w Update of b
- Dampens oscillations
Momentum | - Improvement to SGD W — QU b — avgp
- 2 parameters to tune
- Root Mean Square propagation d db
w
RMSprop - Speeds up learning algorithm w— b+—b—«
by controlling oscillations VSdw V' Sdb
- Adaptive Moment estimation . v
Adam - Most popular method w—a—2 | pe—b—a—L
- 4 parameters to tune V8dw + € VSdy + €

Remark: other methods include Adadelta, Adagrad and SGD.

3.4 Regularization

O Dropout — Dropout is a technique used in neural networks to prevent overfitting the training
data by dropping out neurons with probability p > 0. It forces the model to avoid relying too
much on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the ’keep’ parameter 1 —p.

0O Weight regularization — In order to make sure that the weights are not too large and that
the model is not overfitting the training set, regularization techniques are usually performed on
the model weights. The main ones are summed up in the table below:

3.3.2 Optimizing convergence

O Learning rate — The learning rate, often noted « or sometimes 7, indicates at which pace the
weights get updated. It can be fixed or adaptively changed. The current most popular method
is called Adam, which is a method that adapts the learning rate.

LASSO Ridge Elastic Net

Tradeoff between variable
selection and small coefficients

- Shrinks coefficients to 0

Mak flicient 11
- Good for variable selection axes cocthicients smatier

(1—a)||0]]s +alf]]3 < 1

0O Adaptive learning rates — Letting the learning rate vary when training a model can reduce 5 5
the training time and improve the numerical optimal solution. While Adam optimizer is the A0 X615 XA =)0 + aH9H2:|
most commonly used technique, others can also be useful. They are summed up in the table AER AeER

below: A €eR,a€0,1]
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O Early stopping — This regularization technique stops the training process as soon as the

validation loss reaches a plateau or starts to increase.

Y
Error

Validation

Training

early stopping

3.5 Good practices

O Overfitting small batch — When debugging a model, it is often useful to make quick tests
to see if there is any major issue with the architecture of the model itself. In particular, in order
to make sure that the model can be properly trained, a mini-batch is passed inside the network
to see if it can overfit on it. If it cannot, it means that the model is either too complex or not

Epochsy

complex enough to even overfit on a small batch, let alone a normal-sized training set.

0 Gradient checking — Gradient checking is a method used during the implementation of
the backward pass of a neural network. It compares the value of the analytical gradient to the

numerical gradient at given points and plays the role of a sanity-check for correctness.

Numerical gradient

Analytical gradient

-Trade-off in choosing h
not too small (numerical instability)

nor too large (poor gradient approx.)

Formula ﬁ(m) = fleth) = flz=h ﬁ(z) = f'(z)
dx 