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General notations

r Vector – We note x ∈ Rn a vector with n entries, where xi ∈ R is the ith entry:

x =

( x1x2
...
xn

)
∈ Rn

r Matrix – We note A ∈ Rm×n a matrix with m rows and n columns, where Ai,j ∈ R is the
entry located in the ith row and jth column:

A =

(
A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

)
∈ Rm×n

Remark: the vector x defined above can be viewed as a n × 1 matrix and is more particularly
called a column-vector.

r Identity matrix – The identity matrix I ∈ Rn×n is a square matrix with ones in its diagonal
and zero everywhere else:

I =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1


Remark: for all matrices A ∈ Rn×n, we have A× I = I ×A = A.

r Diagonal matrix – A diagonal matrix D ∈ Rn×n is a square matrix with nonzero values in
its diagonal and zero everywhere else:

D =


d1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 dn


Remark: we also note D as diag(d1,...,dn).

Matrix operations

r Vector-vector multiplication – There are two types of vector-vector products:

• inner product: for x,y ∈ Rn, we have:

xT y =
n∑

i=1

xiyi ∈ R

• outer product: for x ∈ Rm, y ∈ Rn, we have:

xyT =
( x1y1 · · · x1yn

...
...

xmy1 · · · xmyn

)
∈ Rm×n

r Matrix-vector multiplication – The product of matrix A ∈ Rm×n and vector x ∈ Rn is a
vector of size Rm, such that:

Ax =

 aT
r,1x

...
aT

r,mx

 =
n∑

i=1

ac,ixi ∈ Rm

where aT
r,i are the vector rows and ac,j are the vector columns of A, and xi are the entries

of x.

r Matrix-matrix multiplication – The product of matrices A ∈ Rm×n and B ∈ Rn×p is a
matrix of size Rn×p, such that:

AB =

 aT
r,1bc,1 · · · aT

r,1bc,p

...
...

aT
r,mbc,1 · · · aT

r,mbc,p

 =
n∑

i=1

ac,ib
T
r,i ∈ Rn×p

where aT
r,i, b

T
r,i are the vector rows and ac,j , bc,j are the vector columns of A and B respec-

tively.

r Transpose – The transpose of a matrix A ∈ Rm×n, noted AT , is such that its entries are
flipped:

∀i,j, AT
i,j = Aj,i

Remark: for matrices A,B, we have (AB)T = BTAT .

r Inverse – The inverse of an invertible square matrix A is noted A−1 and is the only matrix
such that:

AA−1 = A−1A = I

Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)−1 =
B−1A−1

r Trace – The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:

tr(A) =
n∑

i=1

Ai,i

Remark: for matrices A,B, we have tr(AT ) = tr(A) and tr(AB) = tr(BA)

r Determinant – The determinant of a square matrix A ∈ Rn×n, noted |A| or det(A) is
expressed recursively in terms of A\i,\j , which is the matrix A without its ith row and jth

column, as follows:
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det(A) = |A| =
n∑

j=1

(−1)i+jAi,j |A\i,\j |

Remark: A is invertible if and only if |A| 6= 0. Also, |AB| = |A||B| and |AT | = |A|.

Matrix properties

r Symmetric decomposition – A given matrix A can be expressed in terms of its symmetric
and antisymmetric parts as follows:

A = A+AT

2︸ ︷︷ ︸
Symmetric

+ A−AT

2︸ ︷︷ ︸
Antisymmetric

r Norm – A norm is a function N : V −→ [0, +∞[ where V is a vector space, and such that
for all x,y ∈ V , we have:

• N(x+ y) 6 N(x) +N(y)

• N(ax) = |a|N(x) for a scalar

• if N(x) = 0, then x = 0

For x ∈ V , the most commonly used norms are summed up in the table below:

Norm Notation Definition Use case

Manhattan, L1 ||x||1
n∑

i=1

|xi| LASSO regularization

Euclidean, L2 ||x||2

√√√√ n∑
i=1

x2
i Ridge regularization

p-norm, Lp ||x||p
n∑

i=1

xp
i

) 1
p

Hölder inequality

Infinity, L∞ ||x||∞ max
i
|xi| Uniform convergence

r Linearly dependence – A set of vectors is said to be linearly dependent if one of the vectors
in the set can be defined as a linear combination of the others.
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

r Matrix rank – The rank of a given matrix A is noted rank(A) and is the dimension of the
vector space generated by its columns. This is equivalent to the maximum number of linearly
independent columns of A.

r Positive semi-definite matrix – A matrix A ∈ Rn×n is positive semi-definite (PSD) and
is noted A � 0 if we have:

A = AT and ∀x ∈ Rn, xTAx > 0

Remark: similarly, a matrix A is said to be positive definite, and is noted A � 0, if it is a PSD
matrix which satisfies for all non-zero vector x, xTAx > 0.

r Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

r Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

r Singular-value decomposition – For a given matrix A of dimensions m× n, the singular-
value decomposition (SVD) is a factorization technique that guarantees the existence of U m×m
unitary, Σ m× n diagonal and V n× n unitary matrices, such that:

A = UΣV T

Matrix calculus

r Gradient – Let f : Rm×n → R be a function and A ∈ Rm×n be a matrix. The gradient of f
with respect to A is a m× n matrix, noted ∇Af(A), such that:(

∇Af(A)
)

i,j
= ∂f(A)

∂Ai,j

Remark: the gradient of f is only defined when f is a function that returns a scalar.

r Hessian – Let f : Rn → R be a function and x ∈ Rn be a vector. The hessian of f with
respect to x is a n× n symmetric matrix, noted ∇2

xf(x), such that:(
∇2

xf(x)
)

i,j
= ∂2f(x)
∂xi∂xj

Remark: the hessian of f is only defined when f is a function that returns a scalar.

r Gradient operations – For matrices A,B,C, the following gradient properties are worth
having in mind:

∇Atr(AB) = BT ∇AT f(A) = (∇Af(A))T

∇Atr(ABATC) = CAB + CTABT ∇A|A| = |A|(A−1)T
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Introduction to Probability and Combinatorics

r Sample space – The set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.

r Event – Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment is contained
in E, then we say that E has occurred.

r Axioms of probability – For each event E, we denote P (E) as the probability of event E
occuring. By noting E1,...,En mutually exclusive events, we have the 3 following axioms:

(1) 0 6 P (E) 6 1 (2) P (S) = 1 (3) P

n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei)

r Permutation – A permutation is an arrangement of r objects from a pool of n objects, in a
given order. The number of such arrangements is given by P (n, r), defined as:

P (n, r) = n!
(n− r)!

r Combination – A combination is an arrangement of r objects from a pool of n objects, where
the order does not matter. The number of such arrangements is given by C(n, r), defined as:

C(n, r) = P (n, r)
r!

= n!
r!(n− r)!

Remark: we note that for 0 6 r 6 n, we have P (n,r) > C(n,r).

Conditional Probability

r Bayes’ rule – For events A and B such that P (B) > 0, we have:

P (A|B) = P (B|A)P (A)
P (B)

Remark: we have P (A ∩B) = P (A)P (B|A) = P (A|B)P (B).

r Partition – Let {Ai, i ∈ [[1,n]]} be such that for all i, Ai 6= ∅. We say that {Ai} is a partition
if we have:

∀i 6= j, Ai ∩Aj = ∅ and
n⋃
i=1

Ai = S

Remark: for any event B in the sample space, we have P (B) =
n∑
i=1

P (B|Ai)P (Ai).

r Extended form of Bayes’ rule – Let {Ai, i ∈ [[1,n]]} be a partition of the sample space.
We have:

P (Ak|B) = P (B|Ak)P (Ak)
n∑
i=1

P (B|Ai)P (Ai)

r Independence – Two events A and B are independent if and only if we have:
P (A ∩B) = P (A)P (B)

Random Variables

r Random variable – A random variable, often noted X, is a function that maps every element
in a sample space to a real line.

r Cumulative distribution function (CDF) – The cumulative distribution function F ,
which is monotonically non-decreasing and is such that lim

x→−∞
F (x) = 0 and lim

x→+∞
F (x) = 1, is

defined as:
F (x) = P (X 6 x)

Remark: we have P (a < X 6 B) = F (b)− F (a).

r Probability density function (PDF) – The probability density function f is the probability
that X takes on values between two adjacent realizations of the random variable.

r Relationships involving the PDF and CDF – Here are the important properties to know
in the discrete (D) and the continuous (C) cases.

Case CDF F PDF f Properties of PDF

(D) F (x) =
∑
xi6x

P (X = xi) f(xj) = P (X = xj) 0 6 f(xj) 6 1 and
∑
j

f(xj) = 1

(C) F (x) =
ˆ x
−∞

f(y)dy f(x) = dF

dx
f(x) > 0 and

ˆ +∞

−∞
f(x)dx = 1

r Variance – The variance of a random variable, often noted Var(X) or σ2, is a measure of the
spread of its distribution function. It is determined as follows:

Var(X) = E[(X − E[X])2] = E[X2]− E[X]2

r Standard deviation – The standard deviation of a random variable, often noted σ, is a
measure of the spread of its distribution function which is compatible with the units of the
actual random variable. It is determined as follows:

σ =
√

Var(X)
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r Expectation and Moments of the Distribution – Here are the expressions of the expected
value E[X], generalized expected value E[g(X)], kth moment E[Xk] and characteristic function

(ω) for the discrete and continuous cases:

Case E[X] E[g(X)] E[Xk] (ω)

(D)
n∑
i=1

xif(xi)
n∑
i=1

g(xi)f(xi)
n∑
i=1

xki f(xi)
n∑
i=1

f(xi)eiωxi

(C)
ˆ +∞

−∞
xf(x)dx

ˆ +∞

−∞
g(x)f(x)dx

ˆ +∞

−∞
xkf(x)dx

ˆ +∞

−∞
f(x)eiωxdx

Remark: we have eiωx = cos(ωx) + i sin(ωx).

r Revisiting the kth moment – The kth moment can also be computed with the characteristic
function as follows:

E[Xk] = 1
ik

[
∂kψ

∂ωk

]
ω=0

r Transformation of random variables – Let the variables X and Y be linked by some
function. By noting fX and fY the distribution function of X and Y respectively, we have:

fY (y) = fX(x)
∣∣∣dx
dy

∣∣∣
r Leibniz integral rule – Let g be a function of x and potentially c, and a, b boundaries that
may depend on c. We have:

∂

∂c

(ˆ b
a
g(x)dx

)
= ∂b

∂c
· g(b)− ∂a

∂c
· g(a) +

ˆ b
a

∂g

∂c
(x)dx

r Chebyshev’s inequality – Let X be a random variable with expected value µ and standard
deviation σ. For k, σ > 0, we have the following inequality:

P (|X − µ| > kσ) 6
1
k2

Jointly Distributed Random Variables

r Conditional density – The conditional density of X with respect to Y , often noted fX|Y ,
is defined as follows:

fX|Y (x) = fXY (x,y)
fY (y)

r Independence – Two random variables X and Y are said to be independent if we have:
fXY (x,y) = fX(x)fY (y)

r Marginal density and cumulative distribution – From the joint density probability
function fXY , we have:

Case Marginal density Cumulative function

(D) fX(xi) =
∑
j

fXY (xi,yj) FXY (x,y) =
∑
xi6x

∑
yj6y

fXY (xi,yj)

(C) fX(x) =
ˆ +∞

−∞
fXY (x,y)dy FXY (x,y) =

ˆ x
−∞

ˆ y
−∞

fXY (x′,y′)dx′dy′

r Distribution of a sum of independent random variables – Let Y = X1 + ...+Xn with
X1, ..., Xn independent. We have:

Y (ω) =
n∏
k=1

ψXk (ω)

r Covariance – We define the covariance of two random variables X and Y , that we note σ2
XY

or more commonly Cov(X,Y ), as follows:

Cov(X,Y ) , σ2
XY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY

r Correlation – By noting σX , σY the standard deviations ofX and Y , we define the correlation
between the random variables X and Y , noted ρXY , as follows:

ρXY =
σ2
XY

σXσY

Remarks: For any X,Y , we have ρXY ∈ [−1,1]. If X and Y are independent, then ρXY = 0.

r Main distributions – Here are the main distributions to have in mind:

Type Distribution PDF (ω) E[X] Var(X)

X ∼ B(n, p) P (X = x) =
(
n

x

)
pxqn−x (peiω + q)n np npq

Binomial x ∈ [[0,n]]
(D)

X ∼ Po(µ) P (X = x) = µx

x!
e−µ eµ(eiω−1) µ µ

Poisson x ∈ N

X ∼ U(a, b) f(x) = 1
b− a

eiωb − eiωa

(b− a)iω
a+ b

2
(b− a)2

12
Uniform x ∈ [a,b]

(C) X ∼ N (µ, σ) f(x) = 1
√

2πσ
e
− 1

2

(
x−µ
σ

)2

eiωµ−
1
2ω

2σ2
µ σ2

Gaussian x ∈ R

X ∼ Exp(λ) f(x) = λe−λx
1

1− iω
λ

1
λ

1
λ2

Exponential x ∈ R+
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Parameter estimation

r Random sample – A random sample is a collection of n random variables X1, ..., Xn that
are independent and identically distributed with X.
r Estimator – An estimator θ̂ is a function of the data that is used to infer the value of an
unknown parameter θ in a statistical model.
r Bias – The bias of an estimator θ̂ is defined as being the difference between the expected
value of the distribution of θ̂ and the true value, i.e.:

Bias(θ̂) = E[θ̂]− θ

Remark: an estimator is said to be unbiased when we have E[θ̂] = θ.
r Sample mean and variance – The sample mean and the sample variance of a random
sample are used to estimate the true mean µ and the true variance σ2 of a distribution, are
noted X and s2 respectively, and are such that:

X = 1
n

n∑
i=1

Xi and s2 = σ̂2 = 1
n− 1

n∑
i=1

(Xi −X)2

r Central Limit Theorem – Let us have a random sample X1, ..., Xn following a given
distribution with mean µ and variance σ2, then we have:

X ∼
n→+∞

N
(
µ,

σ
√
n

)
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Introduction to Supervised Learning

Given a set of data points {x(1), ..., x(m)} associated to a set of outcomes {y(1), ..., y(m)}, we
want to build a classifier that learns how to predict y from x.
r Type of prediction – The different types of predictive models are summed up in the table
below:

Regression Classifier

Outcome Continuous Class

Examples Linear regression Logistic regression, SVM, Naive Bayes

r Type of model – The different models are summed up in the table below:

Discriminative model Generative model

Goal Directly estimate P (y|x) Estimate P (x|y) to deduce P (y|x)

What’s learned Decision boundary Probability distributions of the data

Illustration

Examples Regressions, SVMs GDA, Naive Bayes

Notations and general concepts

r Hypothesis – The hypothesis is noted hθ and is the model that we choose. For a given input
data x(i), the model prediction output is hθ(x(i)).

r Loss function – A loss function is a function L : (z,y) ∈ R× Y 7−→ L(z,y) ∈ R that takes as
inputs the predicted value z corresponding to the real data value y and outputs how different
they are. The common loss functions are summed up in the table below:

Least squared Logistic Hinge Cross-entropy

1
2

(y − z)2 log(1 + exp(−yz)) max(0,1− yz) −
[

y log(z) + (1 − y) log(1 − z)
]

Linear regression Logistic regression SVM Neural Network

r Cost function – The cost function J is commonly used to assess the performance of a model,
and is defined with the loss function L as follows:

J(θ) =
m∑
i=1

L(hθ(x(i)), y(i))

r Gradient descent – By noting α ∈ R the learning rate, the update rule for gradient descent
is expressed with the learning rate and the cost function J as follows:

θ ←− θ − α∇J(θ)

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training
example, and batch gradient descent is on a batch of training examples.

r Likelihood – The likelihood of a model L(θ) given parameters θ is used to find the optimal
parameters θ through maximizing the likelihood. In practice, we use the log-likelihood `(θ) =
log(L(θ)) which is easier to optimize. We have:

θopt = arg max
θ

L(θ)

r Newton’s algorithm – The Newton’s algorithm is a numerical method that finds θ such
that `′(θ) = 0. Its update rule is as follows:

θ θ −
`′(θ)
`′′(θ)

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has
the following update rule:

θ θ −
(
∇2
θ`(θ)

)−1
∇θ`(θ)
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Linear regression

We assume here that y|x; θ ∼ N (µ,σ2)
r Normal equations – By noting X the matrix design, the value of θ that minimizes the cost
function is a closed-form solution such that:

θ = (XTX)−1XT y

r LMS algorithm – By noting α the learning rate, the update rule of the Least Mean Squares
(LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff
learning rule, is as follows:

∀j, θj ← θj + α

m∑
i=1

[
y(i) − hθ(x(i))

]
x

(i)
j

Remark: the update rule is a particular case of the gradient ascent.

r LWR – Locally Weighted Regression, also known as LWR, is a variant of linear regression that
weights each training example in its cost function by w(i)(x), which is defined with parameter
τ ∈ R as:

w(i)(x) = exp
(
−

(x(i) − x)2

2τ2

)

Classification and logistic regression

r Sigmoid function – The sigmoid function g, also known as the logistic function, is defined
as follows:

∀z ∈ R, g(z) = 1
1 + e−z

∈]0,1[

r Logistic regression – We assume here that y|x; θ ∼ Bernoulli(φ). We have the following
form:

φ = p(y = 1|x; θ) = 1
1 + exp(−θT x)

= g(θT x)

Remark: there is no closed form solution for the case of logistic regressions.

r Softmax regression – A softmax regression, also called a multiclass logistic regression, is
used to generalize logistic regression when there are more than 2 outcome classes. By convention,
we set θK = 0, which makes the Bernoulli parameter φi of each class i equal to:

φi =
exp(θTi x)
K∑
j=1

exp(θTj x)

Generalized Linear Models

r Exponential family – A class of distributions is said to be in the exponential family if it can
be written in terms of a natural parameter, also called the canonical parameter or link function,
η, a sufficient statistic T (y) and a log-partition function a(η) as follows:

p(y; η) = b(y) exp(ηT (y)− a(η))

Remark: we will often have T (y) = y. Also, exp(−a(η)) can be seen as a normalization param-
eter that will make sure that the probabilities sum to one.
Here are the most common exponential distributions summed up in the following table:

Distribution η T (y) a(η) b(y)

Bernoulli log
(

φ
1−φ

)
y log(1 + exp(η)) 1

Gaussian µ y η2

2
1√
2π

exp
(
− y

2

2

)
Poisson log(λ) y eη

1
y!

Geometric log(1− φ) y log
(

eη

1−eη
)

1

r Assumptions of GLMs – Generalized Linear Models (GLM) aim at predicting a random
variable y as a function fo x ∈ Rn+1 and rely on the following 3 assumptions:

(1) y|x; θ ∼ ExpFamily(η) (2) hθ(x) = E[y|x; θ] (3) η = θT x

Remark: ordinary least squares and logistic regression are special cases of generalized linear
models.

Support Vector Machines

The goal of support vector machines is to find the line that maximizes the minimum distance to
the line.

r Optimal margin classifier – The optimal margin classifier h is such that:

h(x) = sign(wT x− b)

where (w, b) ∈ Rn × R is the solution of the following optimization problem:

min 1
2
||w||2 such that y(i)(wT x(i) − b) > 1
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Remark: the line is defined as wT x− b = 0 .

r Hinge loss – The hinge loss is used in the setting of SVMs and is defined as follows:
L(z,y) = [1− yz]+ = max(0,1− yz)

r Kernel – Given a feature mapping φ, we define the kernel K to be defined as:

K(x,z) = φ(x)Tφ(z)

In practice, the kernel K defined by K(x,z) = exp
(
− ||x−z||

2

2σ2

)
is called the Gaussian kernel

and is commonly used.

Remark: we say that we use the "kernel trick" to compute the cost function using the kernel
because we actually don’t need to know the explicit mapping φ, which is often very complicated.
Instead, only the values K(x,z) are needed.

r Lagrangian – We define the Lagrangian L(w,b) as follows:

L(w,b) = f(w) +
l∑
i=1

βihi(w)

Remark: the coefficients βi are called the Lagrange multipliers.

Generative Learning

A generative model first tries to learn how the data is generated by estimating P (x|y), which
we can then use to estimate P (y|x) by using Bayes’ rule.

Gaussian Discriminant Analysis

r Setting – The Gaussian Discriminant Analysis assumes that y and x|y = 0 and x|y = 1 are
such that:

y ∼ Bernoulli(φ)

x|y = 0 ∼ N (µ0,Σ) and x|y = 1 ∼ N (µ1,Σ)

r Estimation – The following table sums up the estimates that we find when maximizing the
likelihood:

φ̂ µ̂j (j = 0,1) Σ̂

1
m

m∑
i=1

1{y(i)=1}

∑m

i=1 1{y(i)=j}x
(i)∑m

i=1 1{y(i)=j}

1
m

m∑
i=1

(x(i) − µy(i) )(x(i) − µy(i) )T

Naive Bayes

r Assumption – The Naive Bayes model supposes that the features of each data point are all
independent:

P (x|y) = P (x1,x2,...|y) = P (x1|y)P (x2|y)... =
n∏
i=1

P (xi|y)

r Solutions – Maximizing the log-likelihood gives the following solutions, with k ∈ {0,1},
l ∈ [[1,L]]

P (y = k) = 1
m
×#{j|y(j) = k} and P (xi = l|y = k) =

#{j|y(j) = k and x(j)
i = l}

#{j|y(j) = k}

Remark: Naive Bayes is widely used for text classification and spam detection.

Tree-based and ensemble methods

These methods can be used for both regression and classification problems.
r CART – Classification and Regression Trees (CART), commonly known as decision trees,
can be represented as binary trees. They have the advantage to be very interpretable.

r Random forest – It is a tree-based technique that uses a high number of decision trees
built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly
uninterpretable but its generally good performance makes it a popular algorithm.
Remark: random forests are a type of ensemble methods.

r Boosting – The idea of boosting methods is to combine several weak learners to form a
stronger one. The main ones are summed up in the table below:
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Adaptive boosting Gradient boosting

- High weights are put on errors to - Weak learners trained
improve at the next boosting step on remaining errors
- Known as Adaboost

Other non-parametric approaches

r k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a
non-parametric approach where the response of a data point is determined by the nature of its
k neighbors from the training set. It can be used in both classification and regression settings.
Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the
higher the variance.

Learning Theory

r Union bound – Let A1, ..., Ak be k events. We have:

P (A1 ∪ ... ∪Ak) 6 P (A1) + ...+ P (Ak)

r Hoeffding inequality – Let Z1, .., Zm be m iid variables drawn from a Bernoulli distribution
of parameter φ. Let φ̂ be their sample mean and γ > 0 fixed. We have:

P (|φ− φ̂| > γ) 6 2 exp(−2γ2m)

Remark: this inequality is also known as the Chernoff bound.

r Training error – For a given classifier h, we define the training error ε̂(h), also known as the
empirical risk or empirical error, to be as follows:

ε̂(h) = 1
m

m∑
i=1

1{h(x(i)) 6=y(i)}

r Probably Approximately Correct (PAC) – PAC is a framework under which numerous
results on learning theory were proved, and has the following set of assumptions:

• the training and testing sets follow the same distribution

• the training examples are drawn independently

r Shattering – Given a set S = {x(1),...,x(d)}, and a set of classifiers H, we say that H shatters
S if for any set of labels {y(1), ..., y(d)}, we have:

∃h ∈ H, ∀i ∈ [[1,d]], h(x(i)) = y(i)

r Upper bound theorem – Let H be a finite hypothesis class such that |H| = k and let δ and
the sample size m be fixed. Then, with probability of at least 1− δ, we have:

ε(̂h) 6
(

min
h∈H

ε(h)
)

+ 2

√
1

2m
log
(2k
δ

)
r VC dimension – The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis
class H, noted VC(H) is the size of the largest set that is shattered by H.
Remark: the VC dimension of H = {set of linear classifiers in 2 dimensions} is 3.

r Theorem (Vapnik) – Let H be given, with VC(H) = d and m the number of training
examples. With probability at least 1− δ, we have:

ε(̂h) 6
(

min
h∈H

ε(h)
)

+O

(√
d

m
log
(
m

d

)
+ 1
m

log
(1
δ

))
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VIP Cheatsheet: Machine Learning Tips

Afshine Amidi and Shervine Amidi

September 9, 2018

Metrics

Given a set of data points {x(1), ..., x(m)}, where each x(i) has n features, associated to a set of
outcomes {y(1), ..., y(m)}, we want to assess a given classifier that learns how to predict y from
x.

Classification

In a context of a binary classification, here are the main metrics that are important to track to
assess the performance of the model.
r Confusion matrix – The confusion matrix is used to have a more complete picture when
assessing the performance of a model. It is defined as follows:

Predicted class
+ –

Actual class

TP FN
+ False Negatives

True Positives
Type II error

FP TN
– False Positives

True Negatives
Type I error

r Main metrics – The following metrics are commonly used to assess the performance of
classification models:

Metric Formula Interpretation

Accuracy
TP + TN

TP + TN + FP + FN
Overall performance of model

Precision
TP

TP + FP
How accurate the positive predictions are

Recall
TP

TP + FN
Coverage of actual positive sample

Sensitivity

Specificity
TN

TN + FP
Coverage of actual negative sample

F1 score
2TP

2TP + FP + FN
Hybrid metric useful for unbalanced classes

r ROC – The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by
varying the threshold. These metrics are are summed up in the table below:

Metric Formula Equivalent

True Positive Rate
TP

TP + FN
Recall, sensitivity

TPR

False Positive Rate
FP

TN + FP
1-specificity

FPR

r AUC – The area under the receiving operating curve, also noted AUC or AUROC, is the
area below the ROC as shown in the following figure:

Regression

r Basic metrics – Given a regression model f , the following metrics are commonly used to
assess the performance of the model:

Total sum of squares Explained sum of squares Residual sum of squares

SStot =
m∑

i=1

(yi − y)2 SSreg =
m∑

i=1

(f(xi)− y)2 SSres =
m∑

i=1

(yi − f(xi))2

r Coefficient of determination – The coefficient of determination, often noted R2 or r2,
provides a measure of how well the observed outcomes are replicated by the model and is defined
as follows:

R2 = 1−
SSres

SStot

r Main metrics – The following metrics are commonly used to assess the performance of
regression models, by taking into account the number of variables n that they take into consid-
eration:

Mallow’s Cp AIC BIC Adjusted R2

SSres + 2(n+ 1)σ̂2

m
2
[

(n + 2) − log(L)
]

log(m)(n + 2) − 2 log(L) 1−
(1−R2)(m− 1)

m− n− 1
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where L is the likelihood and σ̂2 is an estimate of the variance associated with each response.

Model selection

r Vocabulary – When selecting a model, we distinguish 3 different parts of the data that we
have as follows:

Training set Validation set Testing set

- Model is trained - Model is assessed - Model gives predictions
- Usually 80% of the dataset - Usually 20% of the dataset - Unseen data

- Also called hold-out
or development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen
test set. These are represented in the figure below:

r Cross-validation – Cross-validation, also noted CV, is a method that is used to select a
model that does not rely too much on the initial training set. The different types are summed
up in the table below:

k-fold Leave-p-out

- Training on k − 1 folds and - Training on n− p observations and
assessment on the remaining one assessment on the p remaining ones
- Generally k = 5 or 10 - Case p = 1 is called leave-one-out

The most commonly used method is called k-fold cross-validation and splits the training data
into k folds to validate the model on one fold while training the model on the k− 1 other folds,
all of this k times. The error is then averaged over the k folds and is named cross-validation
error.

r Regularization – The regularization procedure aims at avoiding the model to overfit the
data and thus deals with high variance issues. The following table sums up the different types
of commonly used regularization techniques:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0 Makes coefficients smaller Tradeoff between variable
- Good for variable selection selection and small coefficients

...+ λ||θ||1 ...+ λ||θ||22 ...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R λ ∈ R λ ∈ R, α ∈ [0,1]

r Model selection – Train model on training set, then evaluate on the development set, then
pick best performance model on the development set, and retrain all of that model on the whole
training set.

Diagnostics

r Bias – The bias of a model is the difference between the expected prediction and the correct
model that we try to predict for given data points.

r Variance – The variance of a model is the variability of the model prediction for given data
points.

r Bias/variance tradeoff – The simpler the model, the higher the bias, and the more complex
the model, the higher the variance.

Underfitting Just right Overfitting

- High training error - Training error - Low training error
Symptoms - Training error close slightly lower than - Training error much

to test error test error lower than test error
- High bias - High variance

Regression
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Classification

Deep learning

- Complexify model - Regularize
Remedies - Add more features - Get more data

- Train longer

r Error analysis – Error analysis is analyzing the root cause of the difference in performance
between the current and the perfect models.

r Ablative analysis – Ablative analysis is analyzing the root cause of the difference in perfor-
mance between the current and the baseline models.

Stanford University 3 Fall 2018

https://stanford.edu/~shervine


Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet – Regression Analysis

What is Regression Analysis?
Fitting a function f(.) to datapoints yi=f(xi) under some error function. Based on the estimated
function and error, we have the following types of regression

What does it fit? Estimated function Error Function

Linear A line in n dimensions

Polynomial A polynomial of order k

Bayesian Linear Gaussian distribution for each point

Ridge Linear/polynomial

LASSO Linear/polynomial

Logistic Linear/polynomial with sigmoid

y

x

Linear Regression

y

x

Polynomial Regression

y

x

Logistic Regression

Label 1

Label 0

y

x

Bayesian Linear Regression

1. Linear Regression:
Fits a line minimizing the sum of mean-squared error
for each datapoint.

2. Polynomial Regression:
Fits a polynomial of order k (k+1 unknowns) minimizing
the sum of mean-squared error for each datapoint.

3. Bayesian Regression:

For each datapoint, fits a gaussian distribution by
minimizing the mean-squared error. As the number of
data points xi increases, it converges to point
estimates i.e.

4. Ridge Regression:

Can fit either a line, or polynomial minimizing the sum
of mean-squared error for each datapoint and the
weighted L2 norm of the function parameters beta.

5. LASSO Regression:
Can fit either a line, or polynomial minimizing the the
sum of mean-squared error for each datapoint and the
weighted L1 norm of the function parameters beta.

6. Logistic Regression:

Can fit either a line, or polynomial with sigmoid
activation minimizing the binary cross-entropy loss for
each datapoint. The labels y are binary class labels.

Visual Representation:

Summary:

Tutorial: Click here

https://towardsdatascience.com/a-beginners-guide-to-regression-analysis-in-machine-learning-8a828b491bbf
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Cheat Sheet – Regularization in ML

Types of Regularization:
1.Modify the loss function:
• L2 Regularization: Prevents the weights from getting too large (defined by L2 norm). Larger

the weights, more complex the model is, more chances of overfitting.

• L1 Regularization: Prevents the weights from getting too large (defined by L1 norm). Larger
the weights, more complex the model is, more chances of overfitting. L1 regularization
introduces sparsity in the weights. It forces more weights to be zero, than reducing the the
average magnitude of all weights

• Entropy: Used for the models that output probability. Forces the probability distribution
towards uniform distribution.

2.Modify data sampling:
• Data augmentation: Create more data from available data by randomly cropping, dilating,

rotating, adding small amount of noise etc.
• K-fold Cross-validation: Divide the data into k groups. Train on (k-1) groups and test on 1

group. Try all k possible combinations.

3.Change training approach:
• Injecting noise: Add random noise to the weights when they are being learned. It pushes the

model to be relatively insensitive to small variations in the weights, hence regularization
• Dropout: Generally used for neural networks. Connections between consecutive layers are

randomly dropped based on a dropout-ratio and the remaining network is trained in the
current iteration. In the next iteration, another set of random connections are dropped.

What is Regularization in ML?
• Regularization is an approach to address over-fitting in ML.
• Overfitted model fails to generalize estimations on test data
• When the underlying model to be learned is low bias/high

variance, or when we have small amount of data, the
estimated model is prone to over-fitting.
• Regularization reduces the variance of the model
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5-fold cross-validation

Test Train

Test

Test

Test

Test

Train

Train

Train

Train

Train

Train

Train

Connections = 16 Active = 11 (70%) 

Dropout-ratio = 30%

Active = 11 (70%)

Original Network

Figure 2. K-fold CV Figure 3. Drop-out

Figure 1. Overfitting

Tutorial: Click here

https://towardsdatascience.com/types-of-regularization-in-machine-learning-eb5ce5f9bf50
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What is Bias?
• Error between average model prediction and ground truth
• The bias of the estimated function tells us the capacity of the underlying model to 

predict the values

What is Variance?
• Average variability in the model prediction for the given dataset
• The variance of the estimated function tells you how much the function can adjust 

to the change in the dataset

High Bias

High Variance

Overly-simplified Model
Under-fitting
High error on both test and train data

Overly-complex Model
Over-fitting
Low error on train data and high on test
Starts modelling the noise in the input

Bias variance Trade-off
• Increasing bias (not always) reduces variance and vice-versa
• Error = bias2 + variance +irreducible error
• The best model is where the error is reduced.
• Compromise between bias and variance

Cheat Sheet – Bias-Variance Tradeoff

Source: https://www.cheatsheets.aqeel-anwar.com

Minimum Error

Tutorial: Click here

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-and-visualizing-it-with-example-and-python-code-7af2681a10a7
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Cheat Sheet – Bayes Theorem and Classifier

What is Bayes’ Theorem?
• Describes the probability of an event, based on prior knowledge of conditions that might be

related to the event.

Likelihood

Prior 
Probability

Evidence

Bayes’ Theorem

Posterior 
Probability

P(B A)

P(A B)

P(A)

P(B)

Example
• Probability of fire P(F) = 1%
• Probability of smoke P(S) = 10%
• Prob of smoke given there is a fire P(S F) = 90%
• What is the probability that there is a fire given 

we see a smoke P(F S)?

• How the probability of an event changes when
we have knowledge of another event

P(A) P(A B)
Usually, a better 
estimate than P(A)

Maximum Aposteriori Probability (MAP) Estimation

The MAP estimate of the random variable y, given that we have observed iid (x1, x2, x3, … ), is
given by. We try to accommodate our prior knowledge when estimating.

Maximum Likelihood Estimation (MLE)

The MAP estimate of the random variable y, given that we have observed iid (x1, x2, x3, … ), is
given by. We assume we don’t have any prior knowledge of the quantity being estimated.

MLE is a special case of MAP where our prior is uniform (all values are equally likely)

Naïve Bayes’ Classifier (Instantiation of MAP as classifier)
Suppose we have two classes, y=y1 and y=y2. Say we have more than one evidence/features (x1, 
x2, x3, … ), using Bayes’ theorem

Naïve Bayes’ theorem assumes the features (x1, x2, … ) are i.i.d. i.e

MAP

MLE

ˆ

ˆ

y that maximizes the product of 
prior and likelihood

y that maximizes only the 
likelihood
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Classifier that always predicts label blue yields prediction accuracy of 90%

Blue: Label 1

Green: Label 0
Accuracy =

Correct Predictions

Total Predictions

Cheat Sheet – Imbalanced Data in Classification

Accuracy = 
TP TN+

TP FN+ FP TN+ +
TP

TP FN+
Recall, Sensitivity =

True +ve rate

True  
Positive

False  
Positive

False 
Negative

True 
Negative

Actual Labels
1 0

P
re

d
ic

te
d
 L

ab
el

s
0

1

TN

TN FP+
Specificity = 

TP

TP FP+
Precision = 

FP

TN FP+
False +ve rate = 

F1 score = 2x
(Prec + Rec) 

(Prec x Rec) 

(Is your prediction correct?) (What did you predict)

True    Negative

(Your prediction is correct)                           (You predicted 0)

Performance metrics associated with Class 1

Accuracy:  %age correct prediction      Correct prediction over total predictions One value for entire network
Precision: Exactness of model From the detected cats, how many were   Each class/label has a value

actually cats

Recall:     Completeness of model Correctly detected cats over total cats Each class/label has a value
F1 Score: Combines Precision/Recall Harmonic mean of Precision and Recall Each class/label has a value

Accuracy doesn’t always give the correct insight about your trained model

Possible solutions

1. Data Replication: Replicate the available data until the 
number of samples are comparable

2. Synthetic Data: Images: Rotate, dilate, crop, add noise to 

existing input images and create new data

3. Modified Loss: Modify the loss to reflect greater error when 

misclassifying smaller sample set

Blue: Label 1

Green: Label 0

No straight line (y=ax) passing through origin can perfectly 
separate data. Best solution: line y=0, predict all labels blue

Straight line (y=ax+b) can perfectly separate data.
Green class will no longer be predicted as blue

Increase model 
complexity

𝑙𝑜𝑠𝑠 = 𝑎 ∗ 𝒍𝒐𝒔𝒔𝒈𝒓𝒆𝒆𝒏 +𝑏 ∗ 𝒍𝒐𝒔𝒔𝒃𝒍𝒖𝒆 𝑎 > 𝑏

Blue: Label 1

Green: Label 0

4. Change the algorithm: Increase the model/algorithm complexity so that the two classes are perfectly 
separable (Con: Overfitting)

Source: https://www.cheatsheets.aqeel-anwar.com Tutorial: Click here

https://towardsdatascience.com/a-walk-through-imbalanced-classes-in-machine-learning-through-a-visual-cheat-sheet-974740b19094
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Cheat Sheet – Ensemble Learning in ML

Complete dataset

Train Weak 
Model #1

Train Weak 
Model #2

Train Weak 
Model #3

Train Weak 
Model #4

Input Dataset
Step #1
Assign equal weights 
to all the datapoints 
in the dataset

Step #(n+1)a
Train a weak model 
with adjusted weights 
on all the datapoints 
in the dataset

Ensemble Method – Boosting

Uniform weights

Adjusted weightsalpha1

Adjusted weightsalpha2

Adjusted weightsalpha3

x x x x

alpha3

Voting

Final Prediction

Step #n+2
In the test phase, predict from each 
weak model and vote their predictions 
weighted by the corresponding alpha to 
get final prediction

Step #2a
Train a weak model 
with equal weights to 
all the datapoints

Step #2b
• Based on the final error on the 

trained weak model, calculate a 
scalar alpha. 

• Use alpha to increase the weights of 
wrongly classified points, and 
decrease the weights of correctly 
classified points 

Step #3a
Train a weak model 
with adjusted weights 
on all the datapoints 
in the dataset

Step #3b
• Based on the final error on the 

trained weak model, calculate a 
scalar alpha. 

• Use alpha to increase the weights of 
wrongly classified points, and 
decrease the weights of correctly 
classified points 

Input Dataset

Subset #1 – Weak Learners Subset #3Subset #2 – Meta Learner

Train Weak 
Model #1

Train Weak 
Model #2

Train Weak 
Model #3

Train Weak 
Model #4

Input Dataset
Step #1
Create 2 subsets from 
original dataset, one 
for training weak 
models and one for 
meta-model

Step #2
Train each weak 
model with the 
weak learner 
dataset

Step #3
Train a meta-
learner for which 
the input is the 
outputs of the 
weak models for 
the Meta Learner 
dataset

Trained Weak 
Model 

#1

Trained Weak 
Model 

#2

Trained Weak 
Model 

#3

Trained Weak 
Model 

#4

Subset #1 – Weak Learners Subset #2 – Meta Learner

Meta Model

Final Prediction

Step #4
In the test phase, feed the input to the 
weak models, collect the output and feed 
it to the meta model. The output of the 
meta model is the final prediction

Ensemble Method – Stacking

Step #2
Train each weak 
model with an 
independent 
subset, in 
parallel

Subset #1 Subset #2 Subset #3 Subset #4

Weak Model 
#1

Weak Model 
#2

Weak Model 
#3

Weak Model 
#4

Voting

Final Prediction

Input DatasetStep #1
Create N subsets 
from original 
dataset, one for each 
weak model

Step #3
In the test phase, predict from 
each weak model and vote their 
predictions to get final prediction

Ensemble Method – Bagging

Parameter Bagging Boosting Stacking

Focuses on Reducing variance Reducing bias Improving accuracy

Nature of weak 

learners is
Homogenous Homogenous Heterogenous

Weak learners are 

aggregated by
Simple voting Weighted voting

Learned voting 

(meta-learner)

What is Ensemble Learning? Wisdom of the crowd
Combine multiple weak models/learners into one predictive model to reduce bias, variance and/or improve accuracy.

Types of Ensemble Learning: N number of weak learners

1.Bagging: Trains N different weak models (usually of same types – homogenous) with N non-overlapping subset of the
input dataset in parallel. In the test phase, each model is evaluated. The label with the greatest number of predictions is
selected as the prediction. Bagging methods reduces variance of the prediction

2.Boosting: Trains N different weak models (usually of same types – homogenous) with the complete dataset in a

sequential order. The datapoints wrongly classified with previous weak model is provided more weights to that they can
be classified by the next weak leaner properly. In the test phase, each model is evaluated and based on the test error of
each weak model, the prediction is weighted for voting. Boosting methods decreases the bias of the prediction.

3.Stacking: Trains N different weak models (usually of different types – heterogenous) with one of the two subsets of the

dataset in parallel. Once the weak learners are trained, they are used to trained a meta learner to combine their
predictions and carry out final prediction using the other subset. In test phase, each model predicts its label, these set of
labels are fed to the meta learner which generates the final prediction.

The block diagrams, and comparison table for each of these three methods can be seen below.

Tutorial: Click here

https://towardsdatascience.com/what-are-ensemble-methods-in-machine-learning-cac1d17ed349


 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Unsupervised learning 
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VIP Cheatsheet: Unsupervised Learning

Afshine Amidi and Shervine Amidi

September 9, 2018

Introduction to Unsupervised Learning

r Motivation – The goal of unsupervised learning is to find hidden patterns in unlabeled data
{x(1),...,x(m)}.

r Jensen’s inequality – Let f be a convex function and X a random variable. We have the
following inequality:

E[f(X)] > f(E[X])

Expectation-Maximization

r Latent variables – Latent variables are hidden/unobserved variables that make estimation
problems difficult, and are often denoted z. Here are the most common settings where there are
latent variables:

Setting Latent variable z x|z Comments

Mixture of k Gaussians Multinomial(φ) N (µj ,Σj) µj ∈ Rn, φ ∈ Rk

Factor analysis N (0,I) N (µ+ Λz,ψ) µj ∈ Rn

r Algorithm – The Expectation-Maximization (EM) algorithm gives an efficient method at
estimating the parameter θ through maximum likelihood estimation by repeatedly constructing
a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• E-step: Evaluate the posterior probability Qi(z(i)) that each data point x(i) came from
a particular cluster z(i) as follows:

Qi(z(i)) = P (z(i)|x(i); θ)

• M-step: Use the posterior probabilities Qi(z(i)) as cluster specific weights on data points
x(i) to separately re-estimate each cluster model as follows:

θi = argmax
θ

∑
i

ˆ
z(i)

Qi(z(i)) log
(
P (x(i),z(i); θ)
Qi(z(i))

)
dz(i)

k-means clustering

We note c(i) the cluster of data point i and µj the center of cluster j.
r Algorithm – After randomly initializing the cluster centroids µ1,µ2,...,µk ∈ Rn, the k-means
algorithm repeats the following step until convergence:

c(i) = arg min
j

||x(i) − µj ||2 and µj =

m∑
i=1

1{c(i)=j}x
(i)

m∑
i=1

1{c(i)=j}

r Distortion function – In order to see if the algorithm converges, we look at the distortion
function defined as follows:

J(c,µ) =
m∑
i=1

||x(i) − µc(i) ||2

Hierarchical clustering

r Algorithm – It is a clustering algorithm with an agglomerative hierarchical approach that
build nested clusters in a successive manner.

r Types – There are different sorts of hierarchical clustering algorithms that aims at optimizing
different objective functions, which is summed up in the table below:
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Ward linkage Average linkage Complete linkage

Minimize within cluster Minimize average distance Minimize maximum distance
distance between cluster pairs of between cluster pairs

Clustering assessment metrics

In an unsupervised learning setting, it is often hard to assess the performance of a model since
we don’t have the ground truth labels as was the case in the supervised learning setting.
r Silhouette coefficient – By noting a and b the mean distance between a sample and all
other points in the same class, and between a sample and all other points in the next nearest
cluster, the silhouette coefficient s for a single sample is defined as follows:

s = b− a
max(a,b)

r Calinski-Harabaz index – By noting k the number of clusters, Bk and Wk the between
and within-clustering dispersion matrices respectively defined as

Bk =
k∑
j=1

nc(i) (µc(i) − µ)(µc(i) − µ)T , Wk =
m∑
i=1

(x(i) − µc(i) )(x(i) − µc(i) )T

the Calinski-Harabaz index s(k) indicates how well a clustering model defines its clusters, such
that the higher the score, the more dense and well separated the clusters are. It is defined as
follows:

s(k) = Tr(Bk)
Tr(Wk)

×
N − k
k − 1

Principal component analysis

It is a dimension reduction technique that finds the variance maximizing directions onto which
to project the data.
r Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

r Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of
matrix A.

r Algorithm – The Principal Component Analysis (PCA) procedure is a dimension reduction
technique that projects the data on k dimensions by maximizing the variance of the data as
follows:

• Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

x
(i)
j ←

x
(i)
j − µj
σj

where µj = 1
m

m∑
i=1

x
(i)
j and σ2

j = 1
m

m∑
i=1

(x(i)
j − µj)

2

• Step 2: Compute Σ = 1
m

m∑
i=1

x(i)x(i)T ∈ Rn×n, which is symmetric with real eigenvalues.

• Step 3: Compute u1, ..., uk ∈ Rn the k orthogonal principal eigenvectors of Σ, i.e. the
orthogonal eigenvectors of the k largest eigenvalues.

• Step 4: Project the data on spanR(u1,...,uk). This procedure maximizes the variance
among all k-dimensional spaces.

Independent component analysis

It is a technique meant to find the underlying generating sources.
r Assumptions – We assume that our data x has been generated by the n-dimensional source
vector s = (s1,...,sn), where si are independent random variables, via a mixing and non-singular
matrix A as follows:

x = As

The goal is to find the unmixing matrix W = A−1 by an update rule.

r Bell and Sejnowski ICA algorithm – This algorithm finds the unmixing matrix W by
following the steps below:

• Write the probability of x = As = W−1s as:

p(x) =
n∏
i=1

ps(wTi x) · |W |

• Write the log likelihood given our training data {x(i), i ∈ [[1,m]]} and by noting g the
sigmoid function as:

l(W ) =
m∑
i=1

(
n∑
j=1

log
(
g′(wTj x(i))

)
+ log |W |

)
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Therefore, the stochastic gradient ascent learning rule is such that for each training example
x(i), we update W as follows:

W ←−W + α




1− 2g(wT1 x(i))
1− 2g(wT2 x(i))

...
1− 2g(wTn x(i))

x(i)T + (WT )−1


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Cheat Sheet – PCA Dimensionality Reduction
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What is PCA?
• Based on the dataset find a new set of orthogonal feature vectors in such a way that the 

data spread is maximum in the direction of the feature vector (or dimension)
• Rates the feature vector in the decreasing order of data spread (or variance)
• The datapoints have maximum variance in the first feature vector, and minimum variance 

in the last feature vector
• The variance of the datapoints in the direction of feature vector can be termed as a 

measure of information in that direction.
Steps
1. Standardize the datapoints
2. Find the covariance matrix from the given datapoints
3. Carry out eigen-value decomposition of the covariance matrix
4. Sort the eigenvalues and eigenvectors

Dimensionality Reduction with PCA

• Keep the first m out of n feature vectors rated by PCA. These m vectors will be the best m 
vectors preserving the maximum information that could have been preserved with m 
vectors on the given dataset

Steps:
1. Carry out steps 1-4 from above
2. Keep first m feature vectors from the sorted eigenvector matrix
3. Transform the data for the new basis (feature vectors)
4. The importance of the feature vector is proportional to the magnitude of the eigen value

Figure 1: Datapoints with feature vectors as 
x and y-axis
Figure 2: The cartesian coordinate system is 
rotated to maximize the standard deviation 
along any one axis (new feature # 2)
Figure 3: Remove the feature vector with 
minimum standard deviation of datapoints 
(new feature # 1) and project the data on 
new feature # 2

Figure 2Figure 1

Figure 3

Source: https://www.cheatsheets.aqeel-anwar.com
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VIP Cheatsheet: Deep Learning

Afshine Amidi and Shervine Amidi

September 15, 2018

Neural Networks

Neural networks are a class of models that are built with layers. Commonly used types of neural
networks include convolutional and recurrent neural networks.
r Architecture – The vocabulary around neural networks architectures is described in the
figure below:

By noting i the ith layer of the network and j the jth hidden unit of the layer, we have:

z
[i]
j = w

[i]
j

T
x+ b

[i]
j

where we note w, b, z the weight, bias and output respectively.

r Activation function – Activation functions are used at the end of a hidden unit to introduce
non-linear complexities to the model. Here are the most common ones:

Sigmoid Tanh ReLU Leaky ReLU

g(z) = 1
1 + e−z

g(z) = ez − e−z

ez + e−z
g(z) = max(0,z) g(z) = max(εz,z)

with ε� 1

r Cross-entropy loss – In the context of neural networks, the cross-entropy loss L(z,y) is
commonly used and is defined as follows:

L(z,y) = −
[
y log(z) + (1− y) log(1− z)

]

r Learning rate – The learning rate, often noted η, indicates at which pace the weights get
updated. This can be fixed or adaptively changed. The current most popular method is called
Adam, which is a method that adapts the learning rate.

r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to weight w is computed using chain rule and is of the following form:

∂L(z,y)
∂w

= ∂L(z,y)
∂a

×
∂a

∂z
×
∂z

∂w

As a result, the weight is updated as follows:

w ←− w − η
∂L(z,y)
∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data.

• Step 2: Perform forward propagation to obtain the corresponding loss.

• Step 3: Backpropagate the loss to get the gradients.

• Step 4: Use the gradients to update the weights of the network.

r Dropout – Dropout is a technique meant at preventing overfitting the training data by
dropping out units in a neural network. In practice, neurons are either dropped with probability
p or kept with probability 1− p.

Convolutional Neural Networks

r Convolutional layer requirement – By noting W the input volume size, F the size of the
convolutional layer neurons, P the amount of zero padding, then the number of neurons N that
fit in a given volume is such that:

N = W − F + 2P
S

+ 1

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch {xi}.
By noting µB , σ2

B the mean and variance of that we want to correct to the batch, it is done as
follows:

xi ←− γ
xi − µB√
σ2
B + ε

+ β

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.
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Recurrent Neural Networks

r Types of gates – Here are the different types of gates that we encounter in a typical recurrent
neural network:

Input gate Forget gate Output gate Gate

Write to cell or not? Erase a cell or not? Reveal a cell or not? How much writing?

r LSTM – A long short-term memory (LSTM) network is a type of RNN model that avoids
the vanishing gradient problem by adding ’forget’ gates.

Reinforcement Learning and Control

The goal of reinforcement learning is for an agent to learn how to evolve in an environment.

r Markov decision processes – AMarkov decision process (MDP) is a 5-tuple (S,A,{Psa},γ,R)
where:

• S is the set of states

• A is the set of actions

• {Psa} are the state transition probabilities for s ∈ S and a ∈ A

• γ ∈ [0,1[ is the discount factor

• R : S × A −→ R or R : S −→ R is the reward function that the algorithm wants to
maximize

r Policy – A policy π is a function π : S −→ A that maps states to actions.
Remark: we say that we execute a given policy π if given a state s we take the action a = π(s).

r Value function – For a given policy π and a given state s, we define the value function V π
as follows:

V π(s) = E

[
R(s0) + γR(s1) + γ2R(s2) + ...|s0 = s,π

]
r Bellman equation – The optimal Bellman equations characterizes the value function V π∗
of the optimal policy π∗:

V π
∗

(s) = R(s) + max
a∈A

γ
∑
s′∈S

Psa(s′)V π
∗

(s′)

Remark: we note that the optimal policy π∗ for a given state s is such that:

π∗(s) = argmax
a∈A

∑
s′∈S

Psa(s′)V ∗(s′)

r Value iteration algorithm – The value iteration algorithm is in two steps:

• We initialize the value:

V0(s) = 0

• We iterate the value based on the values before:

Vi+1(s) = R(s) + max
a∈A

[∑
s′∈S

γPsa(s′)Vi(s′)

]

r Maximum likelihood estimate – The maximum likelihood estimates for the state transition
probabilities are as follows:

Psa(s′) = #times took action a in state s and got to s′

#times took action a in state s

r Q-learning – Q-learning is a model-free estimation of Q, which is done as follows:

Q(s,a)← Q(s,a) + α

[
R(s,a,s′) + γmax

a′
Q(s′,a′)−Q(s,a)

]
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1 Convolutional Neural Networks

1.1 Overview

r Architecture of a traditional CNN – Convolutional neural networks, also known as CNNs,
are a specific type of neural networks that are generally composed of the following layers:

The convolution layer and the pooling layer can be fine-tuned with respect to hyperparameters
that are described in the next sections.

1.2 Types of layer

r Convolutional layer (CONV) – The convolution layer (CONV) uses filters that perform
convolution operations as it is scanning the input I with respect to its dimensions. Its hyperpa-
rameters include the filter size F and stride S. The resulting output O is called feature map or
activation map.

Remark: the convolution step can be generalized to the 1D and 3D cases as well.

r Pooling (POOL) – The pooling layer (POOL) is a downsampling operation, typically applied
after a convolution layer, which does some spatial invariance. In particular, max and average
pooling are special kinds of pooling where the maximum and average value is taken, respectively.
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Max pooling Average pooling

Purpose Each pooling operation selects the
maximum value of the current view

Each pooling operation averages
the values of the current view

Illustration

Comments - Preserves detected features
- Most commonly used

- Downsamples feature map
- Used in LeNet

r Fully Connected (FC) – The fully connected layer (FC) operates on a flattened input where
each input is connected to all neurons. If present, FC layers are usually found towards the end
of CNN architectures and can be used to optimize objectives such as class scores.

1.3 Filter hyperparameters

The convolution layer contains filters for which it is important to know the meaning behind its
hyperparameters.

r Dimensions of a filter – A filter of size F ×F applied to an input containing C channels is
a F × F × C volume that performs convolutions on an input of size I × I × C and produces an
output feature map (also called activation map) of size O ×O × 1.

Remark: the application of K filters of size F × F results in an output feature map of size
O ×O ×K.

r Stride – For a convolutional or a pooling operation, the stride S denotes the number of pixels
by which the window moves after each operation.

r Zero-padding – Zero-padding denotes the process of adding P zeroes to each side of the
boundaries of the input. This value can either be manually specified or automatically set through
one of the three modes detailed below:

Valid Same Full

Value P = 0
Pstart =

⌊
Sd I

S
e−I+F−S

2

⌋
Pend =

⌈
Sd I

S
e−I+F−S

2

⌉ Pstart ∈ [[0,F − 1]]

Pend = F − 1

Illustration

Purpose

- No padding

- Drops last
convolution if
dimensions do not
match

- Padding such that feature

map size has size
⌈
I
S

⌉
- Output size is
mathematically convenient
- Also called ’half’ padding

- Maximum padding
such that end
convolutions are
applied on the limits
of the input
- Filter ’sees’ the input
end-to-end

1.4 Tuning hyperparameters

r Parameter compatibility in convolution layer – By noting I the length of the input
volume size, F the length of the filter, P the amount of zero padding, S the stride, then the
output size O of the feature map along that dimension is given by:

O = I − F + Pstart + Pend
S

+ 1

Remark: often times, Pstart = Pend , P , in which case we can replace Pstart + Pend by 2P in
the formula above.
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r Understanding the complexity of the model – In order to assess the complexity of a
model, it is often useful to determine the number of parameters that its architecture will have.
In a given layer of a convolutional neural network, it is done as follows:

CONV POOL FC

Illustration

Input size I × I × C I × I × C Nin

Output size O ×O ×K O ×O × C Nout

Number of
parameters (F × F × C + 1) ·K 0 (Nin + 1)×Nout

Remarks

- One bias parameter
per filter
- In most cases, S < F

- A common choice
for K is 2C

- Pooling operation
done channel-wise

- In most cases, S = F

- Input is flattened
- One bias parameter
per neuron
- The number of FC
neurons is free of
structural constraints

r Receptive field – The receptive field at layer k is the area denoted Rk × Rk of the input
that each pixel of the k-th activation map can ’see’. By calling Fj the filter size of layer j and
Si the stride value of layer i and with the convention S0 = 1, the receptive field at layer k can
be computed with the formula:

Rk = 1 +
k∑
j=1

(Fj − 1)
j−1∏
i=0

Si

In the example below, we have F1 = F2 = 3 and S1 = S2 = 1, which gives R2 = 1+2 · 1+2 · 1 =
5.

1.5 Commonly used activation functions

r Rectified Linear Unit – The rectified linear unit layer (ReLU) is an activation function g
that is used on all elements of the volume. It aims at introducing non-linearities to the network.
Its variants are summarized in the table below:

ReLU Leaky ReLU ELU

g(z) = max(0,z) g(z) = max(εz,z)
with ε� 1

g(z) = max(α(ez − 1),z)
with α� 1

Non-linearity complexities
biologically interpretable

Addresses dying ReLU
issue for negative values Differentiable everywhere

r Softmax – The softmax step can be seen as a generalized logistic function that takes as input
a vector of scores x ∈ Rn and outputs a vector of output probability p ∈ Rn through a softmax
function at the end of the architecture. It is defined as follows:

p =
(p1

...
pn

)
where pi = exi

n∑
j=1

exj

1.6 Object detection

r Types of models – There are 3 main types of object recognition algorithms, for which the
nature of what is predicted is different. They are described in the table below:

Image classification Classification
w. localization Detection

- Classifies a picture

- Predicts probability
of object

- Detects object in a picture
- Predicts probability of
object and where it is
located

- Detects up to several objects
in a picture
- Predicts probabilities of objects
and where they are located

Traditional CNN Simplified YOLO, R-CNN YOLO, R-CNN

r Detection – In the context of object detection, different methods are used depending on
whether we just want to locate the object or detect a more complex shape in the image. The
two main ones are summed up in the table below:
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Bounding box detection Landmark detection

Detects the part of the image where
the object is located

- Detects a shape or characteristics of
an object (e.g. eyes)
- More granular

Box of center (bx,by), height bh
and width bw

Reference points (l1x,l1y), ...,(lnx,lny)

r Intersection over Union – Intersection over Union, also known as IoU, is a function that
quantifies how correctly positioned a predicted bounding box Bp is over the actual bounding
box Ba. It is defined as:

IoU(Bp,Ba) = Bp ∩Ba
Bp ∪Ba

Remark: we always have IoU ∈ [0,1]. By convention, a predicted bounding box Bp is considered
as being reasonably good if IoU(Bp,Ba) > 0.5.

r Anchor boxes – Anchor boxing is a technique used to predict overlapping bounding boxes.
In practice, the network is allowed to predict more than one box simultaneously, where each box
prediction is constrained to have a given set of geometrical properties. For instance, the first
prediction can potentially be a rectangular box of a given form, while the second will be another
rectangular box of a different geometrical form.

r Non-max suppression – The non-max suppression technique aims at removing duplicate
overlapping bounding boxes of a same object by selecting the most representative ones. After
having removed all boxes having a probability prediction lower than 0.6, the following steps are
repeated while there are boxes remaining:

• Step 1: Pick the box with the largest prediction probability.

• Step 2: Discard any box having an IoU > 0.5 with the previous box.

r YOLO – You Only Look Once (YOLO) is an object detection algorithm that performs the
following steps:

• Step 1: Divide the input image into a G×G grid.

• Step 2: For each grid cell, run a CNN that predicts y of the following form:

y =
[
pc,bx,by ,bh,bw,c1,c2,...,cp︸ ︷︷ ︸

repeated k times

,...
]T
∈ RG×G×k×(5+p)

where pc is the probability of detecting an object, bx,by ,bh,bw are the properties of the
detected bouding box, c1,...,cp is a one-hot representation of which of the p classes were
detected, and k is the number of anchor boxes.

• Step 3: Run the non-max suppression algorithm to remove any potential duplicate over-
lapping bounding boxes.

Remark: when pc = 0, then the network does not detect any object. In that case, the corre-
sponding predictions bx, ..., cp have to be ignored.

r R-CNN – Region with Convolutional Neural Networks (R-CNN) is an object detection algo-
rithm that first segments the image to find potential relevant bounding boxes and then run the
detection algorithm to find most probable objects in those bounding boxes.

Remark: although the original algorithm is computationally expensive and slow, newer archi-
tectures enabled the algorithm to run faster, such as Fast R-CNN and Faster R-CNN.
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1.6.1 Face verification and recognition

r Types of models – Two main types of model are summed up in table below:

Face verification Face recognition

- Is this the correct person?
- One-to-one lookup

- Is this one of the K persons in the database?
- One-to-many lookup

r One Shot Learning – One Shot Learning is a face verification algorithm that uses a limited
training set to learn a similarity function that quantifies how different two given images are. The
similarity function applied to two images is often noted d(image 1, image 2).

r Siamese Network – Siamese Networks aim at learning how to encode images to then quantify
how different two images are. For a given input image x(i), the encoded output is often noted
as f(x(i)).

r Triplet loss – The triplet loss ` is a loss function computed on the embedding representation
of a triplet of images A (anchor), P (positive) and N (negative). The anchor and the positive
example belong to a same class, while the negative example to another one. By calling α ∈ R+

the margin parameter, this loss is defined as follows:

`(A,P,N) = max (d(A,P )− d(A,N) + α,0)

1.6.2 Neural style transfer

r Motivation – The goal of neural style transfer is to generate an image G based on a given
content C and a given style S.

r Activation – In a given layer l, the activation is noted a[l] and is of dimensions nH ×nw×nc

r Content cost function – The content cost function Jcontent(C,G) is used to determine how
the generated image G differs from the original content image C. It is defined as follows:

Jcontent(C,G) = 1
2
||a[l](C) − a[l](G)||2

r Style matrix – The style matrix G[l] of a given layer l is a Gram matrix where each of its
elements G[l]

kk′ quantifies how correlated the channels k and k′ are. It is defined with respect to
activations a[l] as follows:

G
[l]
kk′ =

n
[l]
H∑
i=1

n
[l]
w∑

j=1

a
[l]
ijk
a

[l]
ijk′

Remark: the style matrix for the style image and the generated image are noted G[l](S) and
G[l](G) respectively.

r Style cost function – The style cost function Jstyle(S,G) is used to determine how the
generated image G differs from the style S. It is defined as follows:

J
[l]
style(S,G) = 1

(2nHnwnc)2 ||G
[l](S) −G[l](G)||2F = 1

(2nHnwnc)2

nc∑
k,k′=1

(
G

[l](S)
kk′ −G[l](G)

kk′

)2

r Overall cost function – The overall cost function is defined as being a combination of the
content and style cost functions, weighted by parameters α,β, as follows:

J(G) = αJcontent(C,G) + βJstyle(S,G)

Remark: a higher value of α will make the model care more about the content while a higher
value of β will make it care more about the style.

1.6.3 Architectures using computational tricks

r Generative Adversarial Network – Generative adversarial networks, also known as GANs,
are composed of a generative and a discriminative model, where the generative model aims at
generating the most truthful output that will be fed into the discriminative which aims at
differentiating the generated and true image.
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Remark: use cases using variants of GANs include text to image, music generation and syn-
thesis.

r ResNet – The Residual Network architecture (also called ResNet) uses residual blocks with a
high number of layers meant to decrease the training error. The residual block has the following
characterizing equation:

a[l+2] = g(a[l] + z[l+2])

r Inception Network – This architecture uses inception modules and aims at giving a try
at different convolutions in order to increase its performance. In particular, it uses the 1 × 1
convolution trick to lower the burden of computation.

? ? ?

2 Recurrent Neural Networks

2.1 Overview

r Architecture of a traditional RNN – Recurrent neural networks, also known as RNNs,
are a class of neural networks that allow previous outputs to be used as inputs while having
hidden states. They are typically as follows:

For each timestep t, the activation a<t> and the output y<t> are expressed as follows:

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba) and y<t> = g2(Wyaa
<t> + by)

where Wax,Waa,Wya, ba, by are coefficients that are shared temporally and g1, g2 activation
functions

The pros and cons of a typical RNN architecture are summed up in the table below:

Advantages Drawbacks

- Possibility of processing input of any length
- Model size not increasing with size of input
- Computation takes into account
historical information
- Weights are shared across time

- Computation being slow
- Difficulty of accessing information
from a long time ago
- Cannot consider any future input
for the current state

r Applications of RNNs – RNN models are mostly used in the fields of natural language
processing and speech recognition. The different applications are summed up in the table below:
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Type of RNN Illustration Example

One-to-one

Tx = Ty = 1
Traditional neural network

One-to-many

Tx = 1, Ty > 1
Music generation

Many-to-one

Tx > 1, Ty = 1
Sentiment classification

Many-to-many

Tx = Ty

Name entity recognition

Many-to-many

Tx 6= Ty

Machine translation

r Loss function – In the case of a recurrent neural network, the loss function L of all time
steps is defined based on the loss at every time step as follows:

L(ŷ,y) =
Ty∑
t=1

L(ŷ<t>,y<t>)

r Backpropagation through time – Backpropagation is done at each point in time. At
timestep T , the derivative of the loss L with respect to weight matrix W is expressed as follows:

∂L(T )

∂W
=

T∑
t=1

∂L(T )

∂W

∣∣∣∣
(t)

2.2 Handling long term dependencies

r Commonly used activation functions – The most common activation functions used in
RNN modules are described below:

Sigmoid Tanh RELU

g(z) = 1
1 + e−z

g(z) = ez − e−z

ez + e−z
g(z) = max(0,z)

r Vanishing/exploding gradient – The vanishing and exploding gradient phenomena are
often encountered in the context of RNNs. The reason why they happen is that it is difficult
to capture long term dependencies because of multiplicative gradient that can be exponentially
decreasing/increasing with respect to the number of layers.

r Gradient clipping – It is a technique used to cope with the exploding gradient problem
sometimes encountered when performing backpropagation. By capping the maximum value for
the gradient, this phenomenon is controlled in practice.

r Types of gates – In order to remedy the vanishing gradient problem, specific gates are used
in some types of RNNs and usually have a well-defined purpose. They are usually noted Γ and
are equal to:

Γ = σ(Wx<t> + Ua<t−1> + b)

where W,U, b are coefficients specific to the gate and σ is the sigmoid function. The main ones
are summed up in the table below:
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Type of gate Role Used in

Update gate Γu How much past should matter now? GRU, LSTM

Relevance gate Γr Drop previous information? GRU, LSTM

Forget gate Γf Erase a cell or not? LSTM

Output gate Γo How much to reveal of a cell? LSTM

r GRU/LSTM – Gated Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM)
deal with the vanishing gradient problem encountered by traditional RNNs, with LSTM being
a generalization of GRU. Below is a table summing up the characterizing equations of each
architecture:

Gated Recurrent Unit
(GRU)

Long Short-Term Memory
(LSTM)

c̃<t> tanh(Wc[Γr ? a<t−1>,x<t>] + bc) tanh(Wc[Γr ? a<t−1>,x<t>] + bc)

c<t> Γu ? c̃<t> + (1− Γu) ? c<t−1> Γu ? c̃<t> + Γf ? c<t−1>

a<t> c<t> Γo ? c<t>

Dependencies

Remark: the sign ? denotes the element-wise multiplication between two vectors.

r Variants of RNNs – The table below sums up the other commonly used RNN architectures:

Bidirectional
(BRNN)

Deep
(DRNN)

2.3 Learning word representation

In this section, we note V the vocabulary and |V | its size.

2.3.1 Motivation and notations
r Representation techniques – The two main ways of representing words are summed up in
the table below:

1-hot representation Word embedding

- Noted ow
- Naive approach, no similarity information

- Noted ew
- Takes into account words similarity

r Embedding matrix – For a given word w, the embedding matrix E is a matrix that maps
its 1-hot representation ow to its embedding ew as follows:

ew = Eow

Remark: learning the embedding matrix can be done using target/context likelihood models.

2.3.2 Word embeddings
r Word2vec – Word2vec is a framework aimed at learning word embeddings by estimating the
likelihood that a given word is surrounded by other words. Popular models include skip-gram,
negative sampling and CBOW.

r Skip-gram – The skip-gram word2vec model is a supervised learning task that learns word
embeddings by assessing the likelihood of any given target word t happening with a context
word c. By noting θt a parameter associated with t, the probability P (t|c) is given by:
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P (t|c) =
exp(θTt ec)
|V |∑
j=1

exp(θTj ec)

Remark: summing over the whole vocabulary in the denominator of the softmax part makes
this model computationally expensive. CBOW is another word2vec model using the surrounding
words to predict a given word.

r Negative sampling – It is a set of binary classifiers using logistic regressions that aim at
assessing how a given context and a given target words are likely to appear simultaneously, with
the models being trained on sets of k negative examples and 1 positive example. Given a context
word c and a target word t, the prediction is expressed by:

P (y = 1|c,t) = σ(θTt ec)

Remark: this method is less computationally expensive than the skip-gram model.

r GloVe – The GloVe model, short for global vectors for word representation, is a word em-
bedding technique that uses a co-occurence matrix X where each Xi,j denotes the number of
times that a target i occurred with a context j. Its cost function J is as follows:

J(θ) = 1
2

|V |∑
i,j=1

f(Xij)(θTi ej + bi + b′j − log(Xij))2

here f is a weighting function such that Xi,j = 0 =⇒ f(Xi,j) = 0.
Given the symmetry that e and θ play in this model, the final word embedding e(final)

w is given
by:

e
(final)
w = ew + θw

2

Remark: the individual components of the learned word embeddings are not necessarily inter-
pretable.

2.4 Comparing words
r Cosine similarity – The cosine similarity between words w1 and w2 is expressed as follows:

similarity = w1 ·w2

||w1|| ||w2||
= cos(θ)

Remark: θ is the angle between words w1 and w2.

r t-SNE – t-SNE (t-distributed Stochastic Neighbor Embedding) is a technique aimed at re-
ducing high-dimensional embeddings into a lower dimensional space. In practice, it is commonly
used to visualize word vectors in the 2D space.

2.5 Language model

r Overview – A language model aims at estimating the probability of a sentence P (y).

r n-gram model – This model is a naive approach aiming at quantifying the probability that
an expression appears in a corpus by counting its number of appearance in the training data.

r Perplexity – Language models are commonly assessed using the perplexity metric, also
known as PP, which can be interpreted as the inverse probability of the dataset normalized by
the number of words T . The perplexity is such that the lower, the better and is defined as
follows:

PP =
T∏
t=1

(
1∑|V |

j=1 y
(t)
j · ŷ

(t)
j

) 1
T

Remark: PP is commonly used in t-SNE.

2.6 Machine translation

r Overview – A machine translation model is similar to a language model except it has an
encoder network placed before. For this reason, it is sometimes referred as a conditional language
model. The goal is to find a sentence y such that:

y = arg max
y<1>,...,y<Ty>

P (y<1>,...,y<Ty>|x)

r Beam search – It is a heuristic search algorithm used in machine translation and speech
recognition to find the likeliest sentence y given an input x.

• Step 1: Find top B likely words y<1>

• Step 2: Compute conditional probabilities y<k>|x,y<1>,...,y<k−1>

• Step 3: Keep top B combinations x,y<1>,...,y<k>
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Remark: if the beam width is set to 1, then this is equivalent to a naive greedy search.

r Beam width – The beam width B is a parameter for beam search. Large values of B yield
to better result but with slower performance and increased memory. Small values of B lead to
worse results but is less computationally intensive. A standard value for B is around 10.

r Length normalization – In order to improve numerical stability, beam search is usually ap-
plied on the following normalized objective, often called the normalized log-likelihood objective,
defined as:

Objective = 1
Tαy

Ty∑
t=1

log
[
p(y<t>|x,y<1>, ..., y<t−1>)

]
Remark: the parameter α can be seen as a softener, and its value is usually between 0.5 and 1.

r Error analysis – When obtaining a predicted translation ŷ that is bad, one can wonder why
we did not get a good translation y∗ by performing the following error analysis:

Case P (y∗|x) > P (ŷ|x) P (y∗|x) 6 P (ŷ|x)

Root cause Beam search faulty RNN faulty

Remedies Increase beam width
- Try different architecture
- Regularize
- Get more data

r Bleu score – The bilingual evaluation understudy (bleu) score quantifies how good a machine
translation is by computing a similarity score based on n-gram precision. It is defined as follows:

bleu score = exp

(
1
n

n∑
k=1

pk

)
where pn is the bleu score on n-gram only defined as follows:

pn =

∑
n-gram∈ŷ

countclip(n-gram)

∑
n-gram∈ŷ

count(n-gram)

Remark: a brevity penalty may be applied to short predicted translations to prevent an artificially
inflated bleu score.

2.7 Attention

r Attention model – This model allows an RNN to pay attention to specific parts of the input
that is considered as being important, which improves the performance of the resulting model
in practice. By noting α<t,t′> the amount of attention that the output y<t> should pay to the
activation a<t′> and c<t> the context at time t, we have:

c<t> =
∑
t′

α<t,t
′>a<t

′> with
∑
t′

α<t,t
′> = 1

Remark: the attention scores are commonly used in image captioning and machine translation.

r Attention weight – The amount of attention that the output y<t> should pay to the
activation a<t′> is given by α<t,t′> computed as follows:

α<t,t
′> = exp(e<t,t′>)

Tx∑
t′′=1

exp(e<t,t
′′>)

Remark: computation complexity is quadratic with respect to Tx.

? ? ?
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3 Deep Learning Tips and Tricks

3.1 Data processing

r Data augmentation – Deep learning models usually need a lot of data to be properly trained.
It is often useful to get more data from the existing ones using data augmentation techniques.
The main ones are summed up in the table below. More precisely, given the following input
image, here are the techniques that we can apply:

Original Flip Rotation Random crop

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

- Rotation with
a slight angle
- Simulates incorrect
horizon calibration

- Random focus
on one part of
the image
- Several random
crops can be
done in a row

Color shift Noise addition Information loss Contrast change

- Nuances of RGB
is slightly changed
- Captures noise
that can occur
with light exposure

- Addition of noise
- More tolerance to
quality variation of
inputs

- Parts of image
ignored
- Mimics potential
loss of parts of image

- Luminosity changes
- Controls difference
in exposition due
to time of day

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch {xi}.
By noting µB , σ2

B the mean and variance of that we want to correct to the batch, it is done as
follows:

xi ←− γ
xi − µB√
σ2
B + ε

+ β

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

3.2 Training a neural network

3.2.1 Definitions

r Epoch – In the context of training a model, epoch is a term used to refer to one iteration
where the model sees the whole training set to update its weights.

r Mini-batch gradient descent – During the training phase, updating weights is usually not
based on the whole training set at once due to computation complexities or one data point due
to noise issues. Instead, the update step is done on mini-batches, where the number of data
points in a batch is a hyperparameter that we can tune.

r Loss function – In order to quantify how a given model performs, the loss function L is
usually used to evaluate to what extent the actual outputs y are correctly predicted by the
model outputs z.

r Cross-entropy loss – In the context of binary classification in neural networks, the cross-
entropy loss L(z,y) is commonly used and is defined as follows:

L(z,y) = −
[
y log(z) + (1− y) log(1− z)

]

3.2.2 Finding optimal weights

r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to each weight w is computed using the chain rule.

Using this method, each weight is updated with the rule:

w ←− w − α
∂L(z,y)
∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data and perform forward propagation to compute the
loss.

• Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.

• Step 3: Use the gradients to update the weights of the network.
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3.3 Parameter tuning

3.3.1 Weights initialization

r Xavier initialization – Instead of initializing the weights in a purely random manner, Xavier
initialization enables to have initial weights that take into account characteristics that are unique
to the architecture.

r Transfer learning – Training a deep learning model requires a lot of data and more impor-
tantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets
that took days/weeks to train, and leverage it towards our use case. Depending on how much
data we have at hand, here are the different ways to leverage this:

Training size Illustration Explanation

Small Freezes all layers,
trains weights on softmax

Medium
Freezes most layers,
trains weights on last
layers and softmax

Large
Trains weights on layers
and softmax by initializing
weights on pre-trained ones

3.3.2 Optimizing convergence

r Learning rate – The learning rate, often noted α or sometimes η, indicates at which pace the
weights get updated. It can be fixed or adaptively changed. The current most popular method
is called Adam, which is a method that adapts the learning rate.

r Adaptive learning rates – Letting the learning rate vary when training a model can reduce
the training time and improve the numerical optimal solution. While Adam optimizer is the
most commonly used technique, others can also be useful. They are summed up in the table
below:

Method Explanation Update of w Update of b

Momentum
- Dampens oscillations
- Improvement to SGD
- 2 parameters to tune

w − αvdw b− αvdb

RMSprop
- Root Mean Square propagation
- Speeds up learning algorithm
by controlling oscillations

w − α
dw
√
sdw

b←− b− α
db
√
sdb

Adam
- Adaptive Moment estimation
- Most popular method
- 4 parameters to tune

w − α
vdw√
sdw + ε

b←− b− α
vdb√
sdb + ε

Remark: other methods include Adadelta, Adagrad and SGD.

3.4 Regularization

r Dropout – Dropout is a technique used in neural networks to prevent overfitting the training
data by dropping out neurons with probability p > 0. It forces the model to avoid relying too
much on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the ’keep’ parameter 1−p.

r Weight regularization – In order to make sure that the weights are not too large and that
the model is not overfitting the training set, regularization techniques are usually performed on
the model weights. The main ones are summed up in the table below:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0
- Good for variable selection Makes coefficients smaller Tradeoff between variable

selection and small coefficients

...+ λ||θ||1
λ ∈ R

...+ λ||θ||22
λ ∈ R

...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R,α ∈ [0,1]
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r Early stopping – This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

3.5 Good practices

r Overfitting small batch – When debugging a model, it is often useful to make quick tests
to see if there is any major issue with the architecture of the model itself. In particular, in order
to make sure that the model can be properly trained, a mini-batch is passed inside the network
to see if it can overfit on it. If it cannot, it means that the model is either too complex or not
complex enough to even overfit on a small batch, let alone a normal-sized training set.

r Gradient checking – Gradient checking is a method used during the implementation of
the backward pass of a neural network. It compares the value of the analytical gradient to the
numerical gradient at given points and plays the role of a sanity-check for correctness.

Numerical gradient Analytical gradient

Formula df

dx
(x) ≈ f(x+ h)− f(x− h)

2h
df

dx
(x) = f ′(x)

Comments

- Expensive; loss has to be
computed two times per dimension
- Used to verify correctness
of analytical implementation
-Trade-off in choosing h
not too small (numerical instability)
nor too large (poor gradient approx.)

- ’Exact’ result

- Direct computation

- Used in the final implementation

? ? ?
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Cheat Sheet – Convolutional Neural Network

Convolutional Neural Network:
The data gets into the CNN through the input layer and passes
through various hidden layers before getting to the output layer.
The output of the network is compared to the actual labels in
terms of loss or error. The partial derivatives of this loss w.r.t the
trainable weights are calculated, and the weights are updated
through one of the various methods using backpropagation.

CNN Template:
Most of the commonly used hidden layers (not all) follow a
pattern
1.Layer function: Basic transforming function such as

convolutional or fully connected layer.
a.Fully Connected: Linear functions between the input and the

output.

-2.0 -1.0 0.0 1.0 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
MSE Loss

mse = (x ° x̂)2mse = (x ° x̂)2

-2.0 -1.0 0.0 1.0 2.0
0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0
MAE Loss

mae = |x ° x̂|mae = |x ° x̂|

-2.0 -1.0 0.0 1.0 2.0

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0
Huber Loss

Ω
1
2(x ° x̂)2 : |x ° x̂| < ∞
∞|x ° x̂| ° 1

2∞
2 : else
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Input Map Kernel Output Map

Convolutional Layer

a.Convolutional Layers: These layers are applied to 2D (3D) input feature maps. The trainable weights are a 2D (3D)
kernel/filter that moves across the input feature map, generating dot products with the overlapping region of the input
feature map.

b.Transposed Convolutional (DeConvolutional) Layer: Usually used to increase the size of the output feature map
(Upsampling) The idea behind the transposed convolutional layer is to undo (not exactly) the convolutional layer

2. Pooling: Non-trainable layer to change the size of the feature map
a. Max/Average Pooling: Decrease the spatial size of the input layer based on

selecting the maximum/average value in receptive field defined by the kernel
b. UnPooling: A non-trainable layer used to increase the spatial size of the input

layer based on placing the input pixel at a certain index in the receptive field
of the output defined by the kernel.

3. Normalization: Usually used just before the activation functions to limit the
unbounded activation from increasing the output layer values too high

a. Local Response Normalization LRN: A non-trainable layer that square-normalizes the pixel values in a feature map
within a local neighborhood.

b. Batch Normalization: A trainable approach to normalizing the data by learning scale and shift variable during training.

3. Activation: Introduce non-linearity so CNN can
efficiently map non-linear complex mapping.

a. Non-parametric/Static functions: Linear, ReLU
b. Parametric functions: ELU, tanh, sigmoid, Leaky ReLU
c. Bounded functions: tanh, sigmoid

5. Loss function: Quantifies how far off the CNN prediction
is from the actual labels.

a. Regression Loss Functions: MAE, MSE, Huber loss
b. Classification Loss Functions: Cross entropy, Hinge loss

w11*x1 + b1

Input Node Output Node 

w21*x2 + b1

w31*
x3 

+ b1

x1

x2

x3

y1

Fully Connected Layer

Tutorial: Click here

https://towardsdatascience.com/a-visualization-of-the-basic-elements-of-a-convolutional-neural-network-75fea30cd78d
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Cheat Sheet – Famous CNNs

AlexNet – 2012
Why: AlexNet was born out of the need to improve the results of
the ImageNet challenge.
What: The network consists of 5 Convolutional (CONV) layers and 3
Fully Connected (FC) layers. The activation used is the Rectified
Linear Unit (ReLU).
How: Data augmentation is carried out to reduce over-fitting, Uses
Local response localization.

VGGNet – 2014
Why: VGGNet was born out of the need to reduce the # of
parameters in the CONV layers and improve on training time
What: There are multiple variants of VGGNet (VGG16, VGG19, etc.)
How: The important point to note here is that all the conv kernels are
of size 3x3 and maxpool kernels are of size 2x2 with a stride of two.

ResNet – 2015
Why: Neural Networks are notorious for not being able to find a
simpler mapping when it exists. ResNet solves that.
What: There are multiple versions of ResNetXX architectures where
‘XX’ denotes the number of layers. The most used ones are ResNet50
and ResNet101. Since the vanishing gradient problem was taken care of
(more about it in the How part), CNN started to get deeper and deeper
How: ResNet architecture makes use of shortcut connections do solve
the vanishing gradient problem. The basic building block of ResNet is
a Residual block that is repeated throughout the network.

Inception – 2014
Why: Lager kernels are preferred for more global features, on the other
hand, smaller kernels provide good results in detecting area-specific
features. For effective recognition of such a variable-sized feature, we
need kernels of different sizes. That is what Inception does.
What: The Inception network architecture consists of several inception 
modules of the following structure. Each inception module consists of 
four operations in parallel, 1x1 conv layer, 3x3 conv layer, 5x5 conv 
layer, max pooling
How: Inception increases the network space from which the best 
network is to be chosen via training. Each inception module can 
capture salient features at different levels.

Filter 
Concatenation

Previous 
Layer

5x5 
Conv

3x3 
Conv

1x1 Conv

1x1 
Conv

1x1 
Conv

3x3 
Maxpool

1x1 
Conv

Figure 2 Inception Block

Weight layer

Weight layer

+

f(x) x

f(x)+x

Figure 1 ResNet Block

Tutorial: Click here

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96




 

 

 

 

 

 

 

 

 

 

 

 

 

5. Reinforcement learning 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reinforcement Learning Cheat Sheet

Agent-Environment Interface

The Agent at each step t receives a representation of the
environment’s state, St ∈ S and it selects an action At ∈ A(s).
Then, as a consequence of its action the agent receives a
reward, Rt+1 ∈ R ∈ R.

Policy
A policy is a mapping from a state to an action

πt(s|a) (1)

That is the probability of select an action At = a if St = s.

Reward
The total reward is expressed as:

Gt =

H∑
k=0

γkrt+k+1 (2)

Where γ is the discount factor and H is the horizon, that can
be infinite.

Markov Decision Process
A Markov Decision Process, MPD, is a 5-tuple
(S,A, P,R, γ) where:

finite set of states:
s ∈ S
finite set of actions:
a ∈ A
state transition probabilities:
p(s′|s, a) = Pr{St+1 = s′|St = s,At = a}
expected reward for state-action-nexstate:
r(s′, s, a) = E[Rt+1|St+1 = s′, St = s,At = a]

(3)

Value Function
Value function describes how good is to be in a specific state s
under a certain policy π. For MDP:

Vπ(s) = E[Gt|St = s] (4)

Informally, is the expected return (expected cumulative
discounted reward) when starting from s and following π

Optimal

V∗(s) = max
π

Vπ(s) (5)

Action-Value (Q) Function
We can also denoted the expected reward for state, action
pairs.

qπ(s, a) = Eπ
[
Gt|St = s,At = a

]
(6)

Optimal

The optimal value-action function:

q∗(s, a) = max
π

qπ(s, a) (7)

Clearly, using this new notation we can redefine V ∗, equation
5, using q∗(s, a), equation 7:

V∗(s) = max
a∈A(s)

qπ∗(s, a) (8)

Intuitively, the above equation express the fact that the value
of a state under the optimal policy must be equal to the
expected return from the best action from that state.

Bellman Equation
An important recursive property emerges for both Value (4)
and Q (6) functions if we expand them.

Value Function

Vπ(s) = Eπ
[
Gt|St = s

]
= Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]

= Eπ
[
Rt+1 + γ

∞∑
k=0

γkRt+k+2|St = s

]
=

∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)

︸ ︷︷ ︸
Sum of all probabilities ∀ possible rr + γ Eπ

[ ∞∑
k=0

γkRt+k+2|St+1 = s′
]

︸ ︷︷ ︸
Expected reward from st+1


=
∑
a
π(a|s)

∑
s′

∑
r
p(s′, r|s, a)

[
r + γVπ(s′)

]

(9)

Similarly, we can do the same for the Q function:

qπ(s, a) = Eπ
[
Gt|St = s,At = a

]
= Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]

= Eπ
[
Rt+1 + γ

∞∑
k=0

γkRt+k+2|St = s,At = a

]

=
∑
s′,r

p(s′, r|s, a)

[
r + γEπ

[ ∞∑
k=0

γkRt+k+2|St+1 = s′
]]

=
∑
s′,r

p(s′, r|s, a)
[
r + γVπ(s′)

]
(10)

Dynamic Programming

Taking advantages of the subproblem structure of the V and Q
function we can find the optimal policy by just planning

Policy Iteration

We can now find the optimal policy

1. Initialisation
V (s) ∈ R, (e.g V (s) = 0) and π(s) ∈ A for all s ∈ S,
∆← 0
2. Policy Evaluation
while ∆ ≥ θ (a small positive number) do

foreach s ∈ S do
v ← V (s)
V (s)←

∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
∆← max(∆, |v − V (s)|)

end

end
3. Policy Improvement
policy-stable ← true
foreach s ∈ S do

old-action ← π(s)
π(s)← argmax

a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
policy-stable ← old-action = π(s)

end
if policy-stable return V ≈ V∗ and π ≈ π∗, else go to 2

Algorithm 1: Policy Iteration



Value Iteration

We can avoid to wait until V (s) has converged and instead do
policy improvement and truncated policy evaluation step in
one operation

Initialise V (s) ∈ R, e.gV (s) = 0
∆← 0
while ∆ ≥ θ (a small positive number) do

foreach s ∈ S do
v ← V (s)
V (s)← max

a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
∆← max(∆, |v − V (s)|)

end

end
ouput: Deterministic policy π ≈ π∗ such that
π(s) = argmax

a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
Algorithm 2: Value Iteration

Monte Carlo Methods

Monte Carlo (MC) is a Model Free method, It does not require
complete knowledge of the environment. It is based on
averaging sample returns for each state-action pair. The
following algorithm gives the basic implementation

Initialise for all s ∈ S, a ∈ A(s) :
Q(s, a)← arbitrary
π(s)← arbitrary
Returns(s, a)← empty list

while forever do
Choose S0 ∈ S and A0 ∈ A(S0), all pairs have

probability > 0
Generate an episode starting at S0, A0 following π
foreach pair s, a appearing in the episode do
G← return following the first occurrence of s, a
Append G to Returns(s, a))
Q(s, a)← average(Returns(s, a))

end
foreach s in the episode do

π(s)← argmax
a

Q(s, a)

end

end

Algorithm 3: Monte Carlo first-visit

For non-stationary problems, the Monte Carlo estimate for,
e.g, V is:

V (St)← V (St) + α
[
Gt − V (St)

]
(11)

Where α is the learning rate, how much we want to forget
about past experiences.

Sarsa
Sarsa (State-action-reward-state-action) is a on-policy TD
control. The update rule:

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)]

n-step Sarsa

Define the n-step Q-Return

q(n) = Rt+1 + γRt+ 2 + . . .+ γn−1Rt+n + γnQ(St+n)

n-step Sarsa update Q(S, a) towards the n-step Q-return

Q(st, at)← Q(st, at) + α
[
q
(n)
t −Q(st, at)

]
Forward View Sarsa(λ)

qλt = (1− λ)

∞∑
n=1

λn−1q
(n)
t

Forward-view Sarsa(λ):

Q(st, at)← Q(st, at) + α
[
qλt −Q(st, at)

]
Initialise Q(s, a) arbitrarily and
Q(terminal − state, ) = 0

foreach episode ∈ episodes do
Choose a from s using policy derived from Q (e.g.,
ε-greedy)

while s is not terminal do
Take action a, observer r, s′

Choose a′ from s′ using policy derived from Q
(e.g., ε-greedy)
Q(s, a)← Q(s, a) + α

[
r + γQ(s′, a′)−Q(s, a)

]
s← s′

a← a′

end

end

Algorithm 4: Sarsa(λ)

Temporal Difference - Q Learning
Temporal Difference (TD) methods learn directly from raw
experience without a model of the environment’s dynamics.
TD substitutes the expected discounted reward Gt from the
episode with an estimation:

V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
(12)

The following algorithm gives a generic implementation.

Initialise Q(s, a) arbitrarily and
Q(terminal − state, ) = 0

foreach episode ∈ episodes do
while s is not terminal do

Choose a from s using policy derived from Q
(e.g., ε-greedy)

Take action a, observer r, s′

Q(s, a)←
Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
s← s′

end

end

Algorithm 5: Q Learning

Deep Q Learning
Created by DeepMind, Deep Q Learning, DQL, substitutes
the Q function with a deep neural network called Q-network.
It also keep track of some observation in a memory in order to
use them to train the network.

Li(θi) = E(s,a,r,s′)∼U(D)

(r + γmax
a

Q(s′, a′; θi−1)︸ ︷︷ ︸
target

−Q(s, a; θi)︸ ︷︷ ︸
prediction

)2


(13)
Where θ are the weights of the network and U(D) is the
experience replay history.

Initialise replay memory D with capacity N
Initialise Q(s, a) arbitrarily
foreach episode ∈ episodes do

while s is not terminal do
With probability ε select a random action
a ∈ A(s)

otherwise select a = maxaQ(s, a; θ)
Take action a, observer r, s′

Store transition (s, a, r, s′) in D
Sample random minibatch of transitions

(sj , aj , rj , s
′
j) from D

Set yj ←{
rj for terminal s′j
rj + γmax

a
Q(s′, a′; θ) for non-terminal s′j

Perform gradient descent step on
(yj −Q(sj , aj ; Θ))2

s← s′

end

end

Algorithm 6: Deep Q Learning

Copyright c© 2018 Francesco Saverio Zuppichini
https://github.com/FrancescoSaverioZuppichini/Reinforcement-
Learning-Cheat-Sheet
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Python 3 Beginner's Reference Cheat Sheet 

Special 
characters 

# coment 

\n new line 

\<char> scape char 

Numeric 
operators 

+ addition

- subtraction

* multiplication

/ division 

** exponent 

% modulus 

// floor division 

Boolean 
operators 

== equal 

!= different 

> higher

< lower

>= higher or equal

<= lower or equal String methods 

string.upper() converts to uppercase 

string.lower() converts to lowercase 

string.count(x) counts how many 
times x appears 

string.find(x) position of the x first 
occurrence 

string.replace(x,y) replaces x for y 

string.strip(x) returns a list of values 
delimited by x 

string.join(L) returns a string with L 
values joined by string 

string.format(x) returns a string that 
includes formatted x 

List methods 

list.append(x) adds x to the end of the list 

list.extend(L) appends L to the end of the list 

list.insert(i,x) inserts x at i position 

list.remove(x) removes the first list item whose 
value is x 

list.pop(i) removes the item at position i and 
returns its value 

list.clear() removes all items from the list 

list.index(x) returns a list of values delimited 
by x 

list.count(x) returns a string with list values  
joined by S 

list.sort() sorts list items 

list.reverse() reverses list  elements 

list.copy() returns a copy of the list 

Dictionary methods 

dict.keys() returns a list of keys 
dict.values() returns a list of values 
dict.items() returns a list of pairs (key,value) 
dict.get(k) returns the value associtated to 

the key k 
dict.pop() removes the item associated to 

the key and returns its value 
dict.update(D) adds keys-values (D) to dictionary 
dict.clear() removes all keys-values from the 

dictionary 
dict.copy() returns a copy of the dictionary 

Main data types 

boolean = True / False 

integer = 10 

float = 10.01 

string = “123abc” 

list = [ value1, value2, … ] 

dictionary = { key1:value1, key2:value2, …} 

String operations 

string[i] retrieves character at position i 

string[-1] retrieves last character 

string[i:j] retrieves characters in range i to j 

dict = {} defines  an empty dictionary 

dict[k] = x stores x associated to key k 

dict[k] retrieves the item with key k 

del dict[k] removes the item with key k 

List operations 

list = [] defines an empty list 

list[i] = x stores x with index i 

list[i] retrieves the item with index I 

list[-1] retrieves last item 

list[i:j] retrieves items in the range i to j 

del list[i] removes the item with index i 

Dictionary operations 

and logical AND 

or logical OR 

not logical NOT 

Comparison 
operators 

Alvaro Sebastian 
http://www.sixthresearcher.com 

Legend: x,y stand for any kind of data values, s for a string, n for a number, L for a list where  i,j are list indexes, D stands for a dictionary and k is a dictionary key. 

http://www.sixthresearcher.com/


if <condition> : 
      <code> 

else if <condition> : 
 <code> 

… 
else: 

  <code> 

if <value> in <list>: 

try: 
      <code> 

except <error>: 
       <code> 

else: 
 <code> 

Data validation 

while <condition>: 
 <code> 

def function(<params>): 
 <code> 
  return <data> 

for <variable> in <list>: 
 <code> 

for <variable> in 
range(start,stop,step): 

 <code> 

Loop control 
statements 

break finishes loop 
execution 

continue jumps to next 
iteration 

pass does nothing 

Built-in functions 

print(x, sep='y') prints x objects separated by y 

input(s) prints s and waits for an input 
that will be returned 

len(x) returns the length of x (s, L or D) 

min(L) returns the minimum value in L 

max(L) returns the maximum value in L 

sum(L) returns the sum of the values in L 

range(n1,n2,n) returns a sequence of numbers 
from n1 to n2 in steps of n 

abs(n) returns the absolute value of n 

round(n1,n) returns the n1 number rounded 
to n digits  

type(x) returns the type of x (string, float, 
list, dict …) 

str(x) converts x to string 

list(x) converts x to a list 

int(x) converts x to a integer number 

float(x) converts x to a float number 

help(s) prints help about x 

map(function, L) Applies function to values in L 

Python 3 Beginner's Reference Cheat Sheet Alvaro Sebastian 
http://www.sixthresearcher.com 

Legend: x,y stand for any kind of data values, s for a string, n for a number, L for a list where  i,j are list indexes, D stands for a dictionary and k is a dictionary key. 

Reading and 
writing files 

f = open(<path>,'w') 
f.write(<str>)
f.close()

f = open(<path>,‘r') 
f.read(<size>)
f.readline(<size>)
f.close()

f = open(<path>,’r’) 
for line in f: 

 <code> 
f.close()

import os 
os.getcwd() 
os.makedirs(<path>) 
os.chdir(<path>) 
os.listdir(<path>) 

Running external 
programs 

Working with files 
and folders 

for key, value in 
dict.items(): 

 <code> 

Conditional 
statements 

Loops Functions 

import module 
module.function() 

Modules 

from module import * 
function() 

import os 
os.system(<command>) 

http://www.sixthresearcher.com/


Selecting List Elements

  Import libraries
>>> import numpy
>>> import numpy as np
  Selective import
>>> from math import pi

>>> help(str)

Python For Data Science Cheat Sheet
Python Basics

Learn More Python for Data Science Interactively at  www.datacamp.com

Variable Assignment

Strings

>>> x=5
>>> x
 5

>>> x+2 Sum of two variables
 7

>>> x-2 Subtraction of two variables
3

>>> x*2 Multiplication of two variables
 10
>>> x**2 Exponentiation of a variable
 25

>>> x%2 Remainder of a variable
 1

>>> x/float(2) Division of a variable
 2.5

Variables and Data Types 

 str()     '5', '3.45', 'True'   

 int()     5, 3, 1 

 float()    5.0, 1.0

 bool()    True, True, True

Variables to strings

Variables to integers

Variables to floats

Variables to booleans

Lists
>>> a = 'is'
>>> b = 'nice'
>>> my_list = ['my', 'list', a, b]
>>> my_list2 = [[4,5,6,7], [3,4,5,6]]

  Subset
>>> my_list[1]
>>> my_list[-3]
  Slice
>>> my_list[1:3]
>>> my_list[1:]
>>> my_list[:3]
>>> my_list[:]
  Subset Lists of Lists
>>> my_list2[1][0]
>>> my_list2[1][:2]

Also see NumPy Arrays

>>> my_list.index(a)             
>>> my_list.count(a)
>>> my_list.append('!')
>>> my_list.remove('!')
>>> del(my_list[0:1])
>>> my_list.reverse()
>>> my_list.extend('!')
>>> my_list.pop(-1)
>>> my_list.insert(0,'!')
>>> my_list.sort()

Get the index of an item
Count an item
Append an item at a time
Remove an item
Remove an item
Reverse the list
Append an item
Remove an item
Insert an item
Sort the list

Index starts at 0

Select item at index 1
Select 3rd last item

Select items at index 1 and 2
Select items after index 0
Select items before index 3
Copy my_list

my_list[list][itemOfList]

Libraries

>>> my_string.upper()
>>> my_string.lower()
>>> my_string.count('w')
>>> my_string.replace('e', 'i')
>>> my_string.strip()

>>> my_string = 'thisStringIsAwesome'
>>> my_string
'thisStringIsAwesome'

Numpy Arrays
>>> my_list = [1, 2, 3, 4]
>>> my_array = np.array(my_list)
>>> my_2darray = np.array([[1,2,3],[4,5,6]])

>>> my_array.shape
>>> np.append(other_array)
>>> np.insert(my_array, 1, 5)
>>> np.delete(my_array,[1])
>>> np.mean(my_array)
>>> np.median(my_array)
>>> my_array.corrcoef()
>>> np.std(my_array)

Asking For Help

>>> my_string[3]
>>> my_string[4:9]

  Subset
>>> my_array[1]
   2

  Slice
>>> my_array[0:2]
   array([1, 2])

  Subset 2D Numpy arrays
>>> my_2darray[:,0]
   array([1, 4])

>>> my_list + my_list
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

>>> my_list * 2
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

>>> my_list2 > 4
True

>>> my_array > 3
  array([False, False, False,  True], dtype=bool)

>>> my_array * 2
array([2, 4, 6, 8])

>>> my_array + np.array([5, 6, 7, 8])
  array([6, 8, 10, 12])

>>> my_string * 2
  'thisStringIsAwesomethisStringIsAwesome'

>>> my_string + 'Innit'
  'thisStringIsAwesomeInnit'

>>> 'm' in my_string
  True DataCamp

Learn Python for Data Science Interactively

Scientific computing

Data analysis

2D plotting

Machine learning

Also see Lists

Get the dimensions of the array
Append items to an array

Insert items in an array
Delete items in an array
Mean of the array
Median of the array

Correlation coefficient

Standard deviation

String to uppercase
String to lowercase
Count String elements

Replace String elements

Strip whitespaces

Select item at index 1

Select items at index 0 and 1

my_2darray[rows, columns]

Install Python

Calculations With Variables
Leading open data science platform

powered by Python
Free IDE that is included 

with Anaconda
Create and share 

documents with live code, 
visualizations, text, ...

Types and Type Conversion

String Operations

List Operations

List Methods

Index starts at 0

String Methods
String Operations

Selecting Numpy Array Elements Index starts at 0

Numpy Array Operations

Numpy Array Functions
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Importing Data in Python

DataCamp
Learn R for Data Science Interactively

>>> filename = 'huck_finn.txt'
>>> file = open(filename, mode='r')   Open the file for reading
>>> text = file.read()               Read a file’s contents
>>> print(file.closed)               Check whether file is closed
>>> file.close()                     Close file
>>> print(text)

>>> with open('huck_finn.txt', 'r') as file: 
print(file.readline()) Read a single line

        print(file.readline())
        print(file.readline())

>>> filename = ‘mnist.txt’
>>> data = np.loadtxt(filename, 

delimiter=',', String used to separate values
skiprows=2,    Skip the first 2 lines
usecols=[0,2], Read the 1st and 3rd column
dtype=str)     The type of the resulting array 

Importing Flat Files with numpy

>>> filename = 'titanic.csv'
>>> data = np.genfromtxt(filename, 

delimiter=',', 
names=True,    Look for column header
dtype=None)

  Files with one data type

  Files with mixed data types

>>> data_array = np.recfromcsv(filename)

The default dtype of the np.recfromcsv() function is None.

Importing Flat Files with pandas
>>> filename = 'winequality-red.csv'
>>> data = pd.read_csv(filename, 

nrows=5, Number of rows of file to read
header=None,    Row number to use as col names
sep='\t',       Delimiter to use
comment='#',    Character to split comments 

  na_values=[""])  String to recognize as NA/NaN

>>> df.head() Return first DataFrame rows
>>> df.tail() Return last DataFrame rows
>>> df.index Describe index
>>> df.columns Describe DataFrame columns
>>> df.info()                      Info on DataFrame
>>> data_array = data.values       Convert a DataFrame to an a NumPy array

Pickled Files
>>> import pickle
>>> with open('pickled_fruit.pkl', 'rb') as file:

pickled_data = pickle.load(file)

Excel Spreadsheets
>>> file = 'urbanpop.xlsx'
>>> data = pd.ExcelFile(file)
>>> df_sheet2 = data.parse('1960-1966', 

skiprows=[0], 
names=['Country', 

'AAM: War(2002)'])
>>> df_sheet1 = data.parse(0,

parse_cols=[0], 
skiprows=[0], 
names=['Country'])

Navigating Your FileSystem

>>> import os
>>> path = "/usr/tmp"
>>> wd = os.getcwd()       Store the name of current directory in a string
>>> os.listdir(wd)         Output contents of the directory in a list
>>> os.chdir(path)         Change current working directory
>>> os.rename("test1.txt", Rename a file

"test2.txt")
>>> os.remove("test1.txt") Delete an existing file
>>> os.mkdir("newdir")     Create a new directory

>>> data.sheet_names

SAS Files
>>> from sas7bdat import SAS7BDAT
>>> with SAS7BDAT('urbanpop.sas7bdat') as file:

df_sas = file.to_data_frame()

Stata Files
>>> data = pd.read_stata('urbanpop.dta')

HDF5 Files
>>> import h5py
>>> filename = 'H-H1_LOSC_4_v1-815411200-4096.hdf5'
>>> data = h5py.File(filename, 'r')

Matlab Files
>>> import scipy.io
>>> filename = 'workspace.mat'
>>> mat = scipy.io.loadmat(filename)

Relational Databases
>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://Northwind.sqlite')

>>> table_names = engine.table_names()

Querying Relational Databases
>>> con = engine.connect()
>>> rs = con.execute("SELECT * FROM Orders")
>>> df = pd.DataFrame(rs.fetchall())
>>> df.columns = rs.keys()
>>> con.close()

>>> with engine.connect() as con:
rs = con.execute("SELECT OrderID FROM Orders")
df = pd.DataFrame(rs.fetchmany(size=5))
df.columns = rs.keys()

Querying relational databases with pandas
>>> df = pd.read_sql_query("SELECT * FROM Orders", engine)

Text Files

Using the context manager with

>>> import numpy as np
>>> import pandas as pd

Most of the time, you’ll use either NumPy or pandas to import 
your data:

Plain Text Files

Table Data: Flat Files

Exploring Your Data

To access the sheet names, use the sheet_names attribute:

Exploring Dictionaries

>>> for key in data ['meta'].keys()      Explore the HDF5 structure
print(key)

 Description
 DescriptionURL
 Detector
 Duration
 GPSstart
 Observatory
 Type
 UTCstart
>>> print(data['meta']['Description'].value) Retrieve the value for a key

Using the context manager with

>>> np.info(np.ndarray.dtype)
>>> help(pd.read_csv)

Help

Accessing Data Items with Keys

Accessing Elements with Functions
>>> print(mat.keys()) Print dictionary keys
>>> for key in data.keys():    Print dictionary keys

print(key)
 meta 
 quality
 strain
>>> pickled_data.values()      Return dictionary values
>>> print(mat.items())         Returns items in list format of (key, value)

tuple pairs

Magic Commands

os Library

!ls List directory contents of files and directories
%cd .. Change current working directory
%pwd Return the current working directory path

Use the table_names() method to fetch a list of table names:

>>> data_array.dtype Data type of array elements
>>> data_array.shape               Array dimensions
>>> len(data_array)                Length of array

pandas DataFrames

NumPy Arrays
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Pandas

DataCamp
Learn Python for Data Science Interactively

Series

DataFrame

4

 7

-5

3

d

c

b

aA one-dimensional labeled array 
capable of holding any data type 

Index

Index

Columns
A two-dimensional labeled 
data structure with columns 
of potentially different types

The Pandas library is built on NumPy and provides easy-to-use 
data structures and data analysis tools for the Python 
programming language.

>>> import pandas as pd
Use the following import convention:

Pandas Data Structures

>>> s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])

>>> data = {'Country': ['Belgium', 'India', 'Brazil'], 

'Capital': ['Brussels', 'New Delhi', 'Brasília'],

'Population': [11190846, 1303171035, 207847528]}

>>> df = pd.DataFrame(data, 

columns=['Country', 'Capital', 'Population'])

Selection

>>> s['b'] Get one element
-5

>>> df[1:] Get subset of a DataFrame
    Country    Capital  Population
  1   India  New Delhi  1303171035
  2  Brazil   Brasília  207847528

   By Position
>>> df.iloc[[0],[0]] Select single value by row &  
    'Belgium' column
>>> df.iat([0],[0])
    'Belgium' 

   By Label
>>> df.loc[[0], ['Country']] Select single value by row &  
     'Belgium'  column labels
>>> df.at([0], ['Country']) 
     'Belgium'

   By Label/Position
>>> df.ix[2] Select single row of 
  Country      Brazil subset of rows
  Capital    Brasília
  Population  207847528

>>> df.ix[:,'Capital']  Select a single column of     
  0     Brussels subset of columns 
  1    New Delhi
  2     Brasília  

           
>>> df.ix[1,'Capital'] Select rows and columns
  'New Delhi'

   Boolean Indexing
>>> s[~(s > 1)] Series s where value is not >1
>>> s[(s < -1) | (s > 2)] s where value is <-1 or >2 
>>> df[df['Population']>1200000000] Use filter to adjust DataFrame

   Setting
>>> s['a'] = 6 Set index a of Series s to 6

Applying Functions
>>> f = lambda x: x*2
>>> df.apply(f)         Apply function
>>> df.applymap(f)          Apply function element-wise

Retrieving Series/DataFrame Information

>>> df.shape (rows,columns)        
>>> df.index	 Describe index	
>>> df.columns          Describe DataFrame columns
>>> df.info()           Info on DataFrame
>>> df.count()          Number of non-NA values

Getting 
Also see NumPy Arrays

Selecting, Boolean Indexing & Setting Basic Information

Summary
>>> df.sum()               Sum of values      
>>> df.cumsum() Cummulative sum of values 
>>> df.min()/df.max()      Minimum/maximum values
>>> df.idxmin()/df.idxmax() Minimum/Maximum index value 
>>> df.describe()          Summary statistics
>>> df.mean()                    Mean of values
>>> df.median() Median of values

Dropping
>>> s.drop(['a', 'c'])       Drop values from rows (axis=0)
>>> df.drop('Country', axis=1) Drop values from columns(axis=1)

Data Alignment

>>> s.add(s3, fill_value=0)
  a    10.0
  b    -5.0
  c    5.0
  d    7.0
>>> s.sub(s3, fill_value=2)
>>> s.div(s3, fill_value=4)
>>> s.mul(s3, fill_value=3)

>>> s3 = pd.Series([7, -2, 3], index=['a', 'c', 'd'])

>>> s + s3
  a     10.0

  b     NaN

  c     5.0

  d     7.0

Arithmetic Operations with Fill Methods

Internal Data Alignment
NA values are introduced in the indices that don’t overlap:

You can also do the internal data alignment yourself with 
the help of the fill methods:

Sort & Rank
>>> df.sort_index() Sort by labels along an axis
>>> df.sort_values(by='Country') Sort by the values along an axis
>>> df.rank()                  Assign ranks to entries

Belgium Brussels

India New Delhi

Brazil Brasília

0

1

2

Country Capital

11190846

1303171035

207847528

Population

I/O
Read and Write to CSV
>>> pd.read_csv('file.csv', header=None, nrows=5)
>>> df.to_csv('myDataFrame.csv')

Read and Write to Excel
>>> pd.read_excel('file.xlsx')
>>> pd.to_excel('dir/myDataFrame.xlsx', sheet_name='Sheet1')

   Read multiple sheets from the same file
>>> xlsx = pd.ExcelFile('file.xls')
>>> df = pd.read_excel(xlsx, 'Sheet1')

>>> help(pd.Series.loc)
Asking For Help

Read and Write to SQL Query or Database Table
>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite:///:memory:')
>>> pd.read_sql("SELECT * FROM my_table;", engine)
>>> pd.read_sql_table('my_table', engine)
>>> pd.read_sql_query("SELECT * FROM my_table;", engine)

>>> pd.to_sql('myDf', engine)

read_sql()is a convenience wrapper around read_sql_table() and 
read_sql_query()
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Advanced Indexing

Reindexing
>>> s2 = s.reindex(['a','c','d','e','b'])

>>> s3 = s.reindex(range(5), 
method='bfill')

  0    3 
  1    3
  2    3
  3    3
  4    3

Forward Filling Backward Filling
>>> df.reindex(range(4), 

      method='ffill')
     Country    Capital   Population
  0  Belgium   Brussels   11190846
  1    India  New Delhi   1303171035
  2   Brazil   Brasília   207847528
  3   Brazil   Brasília   207847528

Pivot

Stack / Unstack

Melt

Combining Data

>>> pd.melt(df2, Gather columns into rows
id_vars=["Date"], 

            value_vars=["Type", "Value"],
value_name="Observations")

>>> stacked = df5.stack() Pivot a level of column labels
>>> stacked.unstack()             Pivot a level of index labels

>>> df3= df2.pivot(index='Date',        Spread rows into columns
columns='Type',  
values='Value')

>>> arrays = [np.array([1,2,3]),
np.array([5,4,3])]

>>> df5 = pd.DataFrame(np.random.rand(3, 2), index=arrays)
>>> tuples = list(zip(*arrays))
>>> index = pd.MultiIndex.from_tuples(tuples, 
                                      names=['first', 'second'])
>>> df6 = pd.DataFrame(np.random.rand(3, 2), index=index)
>>> df2.set_index(["Date", "Type"]) 

Missing Data
>>> df.dropna() Drop NaN values
>>> df3.fillna(df3.mean())       Fill NaN values with a predetermined value
>>> df2.replace("a", "f")       Replace values with others

2016-03-01 a

2016-03-02 b

2016-03-01 c

11.432

13.031

20.784

2016-03-03 a

2016-03-02 a

2016-03-03 c

99.906

1.303

20.784

Date Type Value

0

1

2

3

4

5

Type

Date

2016-03-01

2016-03-02

2016-03-03

a

11.432

1.303

99.906

b

NaN

13.031

NaN

c

20.784

NaN

20.784

  Selecting
>>> df3.loc[:,(df3>1).any()] Select cols with any vals >1
>>> df3.loc[:,(df3>1).all()] Select cols with vals > 1
>>> df3.loc[:,df3.isnull().any()] Select cols with NaN
>>> df3.loc[:,df3.notnull().all()] Select cols without NaN
  Indexing With isin
>>> df[(df.Country.isin(df2.Type))] Find same elements
>>> df3.filter(items=”a”,”b”])                  Filter on values
>>> df.select(lambda x: not x%5) Select specific elements
  Where
>>> s.where(s > 0) Subset the data
  Query
>>> df6.query('second > first') Query DataFrame

Pivot Table
>>> df4 = pd.pivot_table(df2, Spread rows into columns

values='Value',  
index='Date',
columns='Type'])

Merge

Join

Concatenate

>>> pd.merge(data1, 
data2, 
how='left', 
on='X1')

>>> data1.join(data2, how='right')

  Vertical
>>> s.append(s2) 
  Horizontal/Vertical
>>> pd.concat([s,s2],axis=1, keys=['One','Two']) 
>>> pd.concat([data1, data2], axis=1, join='inner')

1

2

3

5

4

3

0

1

0

1

0

1

0.233482

0.390959

0.184713

0.237102

0.433522

0.429401

1

2

3

5

4

3

0

0.233482

0.184713

0.433522

1

0.390959

0.237102

0.429401

Stacked

Unstacked

2016-03-01 a

2016-03-02 b

2016-03-01 c

11.432

13.031

20.784

2016-03-03 a

2016-03-02 a

2016-03-03 c

99.906

1.303

20.784

Date Type Value

0

1

2

3

4

5

2016-03-01 Type
2016-03-02 Type
2016-03-01 Type

a
b
c

2016-03-03 Type
2016-03-02 Type
2016-03-03 Type

a
a
c

Date Variable Observations

0
1
2
3
4
5

2016-03-01 Value
2016-03-02 Value
2016-03-01 Value

11.432
13.031
20.784

2016-03-03 Value
2016-03-02 Value
2016-03-03 Value

99.906
1.303

20.784

6
7
8
9

10
11

Iteration
>>> df.iteritems() (Column-index, Series) pairs
>>> df.iterrows() (Row-index, Series) pairs

data1

a

b

c

11.432

1.303

99.906

X1 X2

a

b

d

20.784

NaN

20.784

data2

X1 X3

a
b
c

11.432
1.303

99.906

20.784

NaN
NaN

X1 X2 X3

>>> pd.merge(data1, 
data2, 
how='outer',
on='X1')

>>> pd.merge(data1, 
data2, 
how='right', 
on='X1')

a
b
d

11.432
1.303
NaN

20.784

NaN
20.784

X1 X2 X3

>>> pd.merge(data1, 
data2,
how='inner',
on='X1')

a
b

11.432
1.303

20.784

NaN

X1 X2 X3

a
b
c

11.432
1.303

99.906

20.784

NaN
NaN

X1 X2 X3

d NaN 20.784

Setting/Resetting Index
>>> df.set_index('Country') Set the index
>>> df4 = df.reset_index() Reset the index
>>> df = df.rename(index=str, Rename DataFrame

columns={"Country":"cntry",
"Capital":"cptl", 
 "Population":"ppltn"})

Duplicate Data
>>> s3.unique() Return unique values
>>> df2.duplicated('Type') Check duplicates
>>> df2.drop_duplicates('Type', keep='last')    Drop duplicates
>>> df.index.duplicated() Check index duplicates

Grouping Data
 Aggregation
>>> df2.groupby(by=['Date','Type']).mean()
>>> df4.groupby(level=0).sum()
>>> df4.groupby(level=0).agg({'a':lambda x:sum(x)/len(x),

'b': np.sum})
  Transformation
>>> customSum = lambda x: (x+x%2)
>>> df4.groupby(level=0).transform(customSum)

MultiIndexing

Dates

Visualization

Also see NumPy Arrays

>>> s.plot()
>>> plt.show()

Also see Matplotlib
>>> import matplotlib.pyplot as plt

>>> df2.plot()
>>> plt.show()

>>> df2['Date']= pd.to_datetime(df2['Date'])
>>> df2['Date']= pd.date_range('2000-1-1', 

periods=6, 
                               freq='M')
>>> dates = [datetime(2012,5,1), datetime(2012,5,2)]
>>> index = pd.DatetimeIndex(dates)
>>> index = pd.date_range(datetime(2012,2,1), end, freq='BM')
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The NumPy library is the core library for scientific computing in 
Python. It provides a high-performance multidimensional array 
object, and tools for working with these arrays. 

>>> import numpy as np
Use the following import convention:

Creating Arrays

>>> np.zeros((3,4))                Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16) Create an array of ones
>>> d = np.arange(10,25,5) Create an array of evenly   

spaced values (step value)  
>>> np.linspace(0,2,9) Create an array of evenly   

spaced values (number of samples)
>>> e = np.full((2,2),7) Create a constant array
>>> f = np.eye(2) Create a 2X2 identity matrix
>>> np.random.random((2,2)) Create an array with random values
>>> np.empty((3,2)) Create an empty array

Array Mathematics

>>> g = a - b Subtraction
  array([[-0.5,  0. ,  0. ],

[-3. , -3. , -3. ]])
>>> np.subtract(a,b) Subtraction
>>> b + a  Addition
  array([[ 2.5,  4. ,  6. ],

[ 5. ,  7. ,  9. ]])
>>> np.add(b,a) Addition
>>> a / b Division
  array([[ 0.66666667,  1.        ,  1.        ],

[ 0.25      ,  0.4       ,  0.5       ]])
>>> np.divide(a,b) Division
>>> a * b Multiplication
  array([[  1.5,   4. ,   9. ],

[  4. ,  10. ,  18. ]])

>>> np.multiply(a,b) Multiplication
>>> np.exp(b) Exponentiation
>>> np.sqrt(b) Square root
>>> np.sin(a) Print sines of an array
>>> np.cos(b) Element-wise cosine 
>>> np.log(a) Element-wise natural logarithm 
>>> e.dot(f) Dot product
  array([[ 7.,  7.],

[ 7.,  7.]])

Subsetting, Slicing, Indexing

>>> a.sum() Array-wise sum
>>> a.min() Array-wise minimum value 
>>> b.max(axis=0) Maximum value of an array row
>>> b.cumsum(axis=1) Cumulative sum of the elements
>>> a.mean() Mean
>>> b.median() Median
>>> a.corrcoef() Correlation coefficient
>>> np.std(b) Standard deviation

Comparison
>>> a == b Element-wise comparison
  array([[False,  True,  True],

[False, False, False]], dtype=bool)
>>> a < 2 Element-wise comparison
  array([True, False, False], dtype=bool)
>>> np.array_equal(a, b) Array-wise comparison

1  2 3

1D array   2D array 3D array

1.5  2 3
4  5 6

Array Manipulation

NumPy Arrays

axis 0

axis 1

axis 0

axis 1
axis 2

Arithmetic Operations

  Transposing Array
>>> i = np.transpose(b) Permute array dimensions
>>> i.T                          Permute array dimensions

  Changing Array Shape
>>> b.ravel() Flatten the array
>>> g.reshape(3,-2) Reshape, but don’t change data

  Adding/Removing Elements
>>> h.resize((2,6)) Return a new array with shape (2,6)
>>> np.append(h,g) Append items to an array
>>> np.insert(a, 1, 5) Insert items in an array
>>> np.delete(a,[1]) Delete items from an array

   Combining Arrays
>>> np.concatenate((a,d),axis=0) Concatenate arrays
  array([ 1,  2,  3, 10, 15, 20])
>>> np.vstack((a,b)) Stack arrays vertically (row-wise)
  array([[ 1. ,  2. ,  3. ],

[ 1.5,  2. ,  3. ],
         [ 4. ,  5. ,  6. ]])
>>> np.r_[e,f] Stack arrays vertically (row-wise)
>>> np.hstack((e,f)) Stack arrays horizontally (column-wise)
  array([[ 7.,  7.,  1.,  0.], 

[ 7.,  7.,  0.,  1.]])
>>> np.column_stack((a,d))       Create stacked column-wise arrays
  array([[ 1, 10],

[ 2, 15],
         [ 3, 20]])
>>> np.c_[a,d] Create stacked column-wise arrays

   Splitting Arrays
>>> np.hsplit(a,3) Split the array horizontally at the 3rd      
    [array([1]),array([2]),array([3])]    index
>>> np.vsplit(c,2) Split the array vertically at the 2nd index
[array([[[ 1.5,  2. ,  1. ],

[ 4. ,  5. ,  6. ]]]), 
  array([[[ 3.,  2.,  3.],

[ 4.,  5.,  6.]]])]

Also see Lists

  Subsetting
>>> a[2]   Select the element at the 2nd index
  3

>>> b[1,2]   Select the element at row 1 column 2
  6.0   (equivalent to b[1][2])

  Slicing
>>> a[0:2]   Select items at index 0 and 1
  array([1, 2])

>>> b[0:2,1]   Select items at rows 0 and 1 in column 1
  array([ 2.,  5.]) 

>>> b[:1]   Select all items at row 0
  array([[1.5, 2., 3.]])           (equivalent to b[0:1, :])
>>> c[1,...] Same as [1,:,:]
  array([[[ 3.,  2.,  1.],
          [ 4.,  5.,  6.]]])

>>> a[ : :-1] Reversed array a 
  array([3, 2, 1])

  Boolean Indexing
>>> a[a<2]     Select elements from a less than 2
  array([1])

  Fancy Indexing
>>> b[[1, 0, 1, 0],[0, 1, 2, 0]]  Select elements (1,0),(0,1),(1,2) and (0,0)
 array([ 4. , 2. , 6. , 1.5]) 
>>> b[[1, 0, 1, 0]][:,[0,1,2,0]]      Select a subset of the matrix’s rows
  array([[ 4. ,5. , 6. , 4. ], and columns
        [ 1.5, 2. , 3. , 1.5],

 [ 4. , 5. , 6. , 4. ],
[ 1.5, 2. , 3. , 1.5]])

>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]], 

dtype = float)

Initial Placeholders

Aggregate Functions

>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my_file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")

I/O

1 2 3

1.5 2 3

4  5 6

Copying Arrays
>>> h = a.view() Create a view of the array with the same data
>>> np.copy(a) Create a copy of the array
>>> h = a.copy() Create a deep copy of the array

Saving & Loading Text Files

Saving & Loading On Disk
>>> np.save('my_array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my_array.npy')

>>> a.shape Array dimensions
>>> len(a) Length of array
>>> b.ndim Number of array dimensions
>>> e.size Number of array elements
>>> b.dtype Data type of array elements
>>> b.dtype.name Name of data type
>>> b.astype(int) Convert an array to a different type

Inspecting Your Array

>>> np.info(np.ndarray.dtype)
Asking For Help

Sorting Arrays
>>> a.sort() Sort an array
>>> c.sort(axis=0) Sort the elements of an array's axis

Data Types
>>> np.int64 Signed 64-bit integer types
>>> np.float32 Standard double-precision floating point
>>> np.complex Complex numbers represented by 128 floats
>>> np.bool Boolean type storing TRUE and FALSE values
>>> np.object Python object type
>>> np.string_ Fixed-length string type
>>> np.unicode_       Fixed-length unicode type

1 2 3

1.5 2 3

4  5 6

1.5 2 3

4  5 6

1 2 3
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          Prepare The Data Also see Lists & NumPy 

Matplotlib is a Python 2D plotting library which produces 
publication-quality figures in a variety of hardcopy formats 
and interactive environments across 
platforms.

1
>>> import numpy as np
>>> x = np.linspace(0, 10, 100)
>>> y = np.cos(x) 
>>> z = np.sin(x)

          Show Plot
>>> plt.show()

Matplotlib 2.0.0 - Updated on: 02/2017

          Save Plot
    Save figures
>>> plt.savefig('foo.png')
   Save transparent figures
>>> plt.savefig('foo.png', transparent=True)

6

5

>>> fig = plt.figure()
>>> fig2 = plt.figure(figsize=plt.figaspect(2.0))

          Create Plot2

Plot Anatomy & Workflow

All plotting is done with respect to an Axes. In most cases, a 
subplot will fit your needs. A subplot is an axes on a grid system.
>>> fig.add_axes()
>>> ax1 = fig.add_subplot(221) # row-col-num
>>> ax3 = fig.add_subplot(212) 
>>> fig3, axes = plt.subplots(nrows=2,ncols=2)
>>> fig4, axes2 = plt.subplots(ncols=3)

           Customize Plot
Colors, Color Bars & Color Maps

Markers

Linestyles

Mathtext

Text & Annotations

Limits, Legends & Layouts

 The basic steps to creating plots with matplotlib are: 
             1 Prepare data     2 Create plot     3 Plot     4 Customize plot     5 Save plot     6 Show plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]
>>> y = [10,20,25,30]
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, color='lightblue', linewidth=3)
>>> ax.scatter([2,4,6], 

[5,15,25], 
color='darkgreen', 
marker='^')

>>> ax.set_xlim(1, 6.5)
>>> plt.savefig('foo.png')
>>> plt.show()

Step 3, 4

Step 2

Step 1

Step 3

Step 6

Plot Anatomy Workflow

4

    Limits & Autoscaling
>>> ax.margins(x=0.0,y=0.1) Add padding to a plot
>>> ax.axis('equal')                             Set the aspect ratio of the plot to 1
>>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5])                   Set limits for x-and y-axis
>>> ax.set_xlim(0,10.5)                          Set limits for x-axis
   Legends
>>> ax.set(title='An Example Axes', Set a title and x-and y-axis labels 

ylabel='Y-Axis',  
           xlabel='X-Axis')
>>> ax.legend(loc='best')                        No overlapping plot elements
    Ticks
>>> ax.xaxis.set(ticks=range(1,5), Manually set x-ticks

ticklabels=[3,100,-12,"foo"])
>>> ax.tick_params(axis='y',                     Make y-ticks longer and go in and out

direction='inout', 
length=10)

   Subplot Spacing
>>> fig3.subplots_adjust(wspace=0.5, Adjust the spacing between subplots

hspace=0.3,
left=0.125, 
right=0.9, 
top=0.9, 
bottom=0.1)

>>> fig.tight_layout() Fit subplot(s) in to the figure area
   Axis Spines
>>> ax1.spines['top'].set_visible(False) Make the top axis line for a plot invisible
>>> ax1.spines['bottom'].set_position(('outward',10)) Move the bottom axis line outward

Figure

Axes

>>> data = 2 * np.random.random((10, 10))
>>> data2 = 3 * np.random.random((10, 10))
>>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]
>>> U = -1 - X**2 + Y
>>> V = 1 + X - Y**2
>>> from matplotlib.cbook import get_sample_data
>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

>>> fig, ax = plt.subplots()
>>> lines = ax.plot(x,y)             Draw points with lines or markers connecting them
>>> ax.scatter(x,y)                  Draw unconnected points, scaled or colored
>>> axes[0,0].bar([1,2,3],[3,4,5])   Plot vertical rectangles (constant width)       
>>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height)
>>> axes[1,1].axhline(0.45)          Draw a horizontal line across axes   
>>> axes[0,1].axvline(0.65)          Draw a vertical line across axes
>>> ax.fill(x,y,color='blue')         Draw filled polygons 
>>> ax.fill_between(x,y,color='yellow')  Fill between y-values and 0

          Plotting Routines3
1D Data

>>> fig, ax = plt.subplots()
>>> im = ax.imshow(img,                      Colormapped or RGB arrays
                                                          cmap='gist_earth',

          interpolation='nearest',
vmin=-2,
vmax=2) 

2D Data or Images

Vector Fields
>>> axes[0,1].arrow(0,0,0.5,0.5)   Add an arrow to the axes
>>> axes[1,1].quiver(y,z)          Plot a 2D field of arrows
>>> axes[0,1].streamplot(X,Y,U,V)  Plot a 2D field of arrows

Data Distributions
>>> ax1.hist(y) Plot a histogram
>>> ax3.boxplot(y)        Make a box and whisker plot
>>> ax3.violinplot(z)     Make a violin plot

>>> axes2[0].pcolor(data2)       Pseudocolor plot of 2D array
>>> axes2[0].pcolormesh(data)    Pseudocolor plot of 2D array
>>> CS = plt.contour(Y,X,U)      Plot contours
>>> axes2[2].contourf(data1)     Plot filled contours
>>> axes2[2]= ax.clabel(CS)      Label a contour plot

Figure

Axes/Subplot

Y-axis

X-axis

1D Data

2D Data or Images

>>> plt.plot(x, x, x, x**2, x, x**3)
>>> ax.plot(x, y, alpha = 0.4)
>>> ax.plot(x, y, c='k')
>>> fig.colorbar(im, orientation='horizontal')
>>> im = ax.imshow(img,                  

cmap='seismic')

>>> fig, ax = plt.subplots()
>>> ax.scatter(x,y,marker=".")
>>> ax.plot(x,y,marker="o")

>>> plt.title(r'$sigma_i=15$', fontsize=20)

>>> ax.text(1, 
-2.1,
'Example Graph',
style='italic')

>>> ax.annotate("Sine",
xy=(8, 0), 
xycoords='data',

                xytext=(10.5, 0), 
textcoords='data',

                arrowprops=dict(arrowstyle="->",
connectionstyle="arc3"),)

>>> plt.plot(x,y,linewidth=4.0)
>>> plt.plot(x,y,ls='solid') 
>>> plt.plot(x,y,ls='--')
>>> plt.plot(x,y,'--',x**2,y**2,'-.')
>>> plt.setp(lines,color='r',linewidth=4.0)

>>> import matplotlib.pyplot as plt

Close & Clear 
>>> plt.cla() Clear an axis
>>> plt.clf()               Clear the entire figure
>>> plt.close() Close a window
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         Figure Aesthetics

         Data

The Python visualization library Seaborn is based on 
matplotlib and provides a high-level interface for drawing 
attractive statistical graphics.

Make use of the following aliases to import the libraries:

The basic steps to creating plots with Seaborn are:
1. Prepare some data
2. Control figure aesthetics
3. Plot with Seaborn
4. Further customize your plot

>>> import pandas as pd
>>> import numpy as np
>>> uniform_data = np.random.rand(10, 12)
>>> data = pd.DataFrame({'x':np.arange(1,101),

'y':np.random.normal(0,4,100)})

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns

        Plotting With Seaborn

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> tips = sns.load_dataset("tips")
>>> sns.set_style("whitegrid")
>>> g = sns.lmplot(x="tip", 

y="total_bill", 
data=tips, 
aspect=2)

>>> g = (g.set_axis_labels("Tip","Total bill(USD)").
set(xlim=(0,10),ylim=(0,100)))
>>> plt.title("title")
>>> plt.show(g)

Step 4

Step 2
Step 1

Step 5

Step 3

1

>>> titanic = sns.load_dataset("titanic")
>>> iris = sns.load_dataset("iris")

Seaborn also offers built-in data sets:

2

3

         Further Customizations4

         Show or Save Plot

>>> sns.set()                         (Re)set the seaborn default
>>> sns.set_style("whitegrid") Set the matplotlib parameters
>>> sns.set_style("ticks",            Set the matplotlib parameters

{"xtick.major.size":8,
 "ytick.major.size":8})

>>> sns.axes_style("whitegrid")       Return a dict of params or use with
with to temporarily set the style

Axis Grids

>>> f, ax = plt.subplots(figsize=(5,6)) Create a figure and one subplot

>>> plt.title("A Title")       Add plot title
>>> plt.ylabel("Survived")     Adjust the label of the y-axis
>>> plt.xlabel("Sex")          Adjust the label of the x-axis
>>> plt.ylim(0,100) Adjust the limits of the y-axis
>>> plt.xlim(0,10) Adjust the limits of the x-axis
>>> plt.setp(ax,yticks=[0,5])   Adjust a plot property
>>> plt.tight_layout() Adjust subplot params

>>> plt.show()                      Show the plot
>>> plt.savefig("foo.png") Save the plot as a figure
>>> plt.savefig("foo.png", Save transparent figure

transparent=True) 

>>> sns.regplot(x="sepal_width",    Plot data and a linear regression
y="sepal_length",   model fit
data=iris,
ax=ax)

>>> g.despine(left=True)           Remove left spine 
>>> g.set_ylabels("Survived")      Set the labels of the y-axis
>>> g.set_xticklabels(rotation=45) Set the tick labels for x
>>> g.set_axis_labels("Survived",  Set the axis labels

"Sex")
>>> h.set(xlim=(0,5), Set the limit and ticks of the 

ylim=(0,5), x-and y-axis
          xticks=[0,2.5,5], 

yticks=[0,2.5,5])

Close & Clear
>>> plt.cla() Clear an axis
>>> plt.clf() Clear an entire figure
>>> plt.close() Close a window

5

Also see Lists, NumPy & Pandas

Also see Matplotlib
Also see Matplotlib

Also see Matplotlib

Also see Matplotlib

Context Functions
>>> sns.set_context("talk")                  Set context to "talk"
>>> sns.set_context("notebook", Set context to "notebook",

font_scale=1.5, Scale font elements and 
rc={"lines.linewidth":2.5}) override param mapping

Seaborn styles

>>> sns.set_palette("husl",3)      Define the color palette
>>> sns.color_palette("husl")      Use with with to temporarily set palette
>>> flatui = ["#9b59b6","#3498db","#95a5a6","#e74c3c","#34495e","#2ecc71"]
>>> sns.set_palette(flatui) Set your own color palette

Color Palette

Plot

Axisgrid Objects

>>> g = sns.FacetGrid(titanic, Subplot grid for plotting conditional
col="survived",  relationships

                      row="sex")
>>> g = g.map(plt.hist,"age")
>>> sns.factorplot(x="pclass", Draw a categorical plot onto a 

y="survived",       Facetgrid
hue="sex",
data=titanic) 

>>> sns.lmplot(x="sepal_width", Plot data and regression model fits
y="sepal_length",       across a FacetGrid
hue="species", 
data=iris)

Regression PlotsCategorical Plots

  Scatterplot
>>> sns.stripplot(x="species", Scatterplot with one

y="petal_length", categorical variable
data=iris) 

>>> sns.swarmplot(x="species", Categorical scatterplot with
y="petal_length", non-overlapping points
data=iris)

  Bar Chart
>>> sns.barplot(x="sex", Show point estimates and

y="survived", confidence intervals with
hue="class", scatterplot glyphs
data=titanic)

  Count Plot
>>> sns.countplot(x="deck", Show count of observations

data=titanic,
palette="Greens_d")

  Point Plot 
>>> sns.pointplot(x="class", Show point estimates and 

y="survived", confidence intervals as
hue="sex",                 rectangular bars
data=titanic, 
palette={"male":"g",

"female":"m"},
markers=["^","o"],
linestyles=["-","--"])

  Boxplot
>>> sns.boxplot(x="alive", Boxplot

y="age",
hue="adult_male",
data=titanic)

>>> sns.boxplot(data=iris,orient="h") Boxplot with wide-form data
  Violinplot
>>> sns.violinplot(x="age", Violin plot

y="sex",
hue="survived",
data=titanic)

>>> plot = sns.distplot(data.y,     Plot univariate distribution
kde=False,
color="b")

Distribution Plots

>>> h = sns.PairGrid(iris) Subplot grid for plotting pairwise
>>> h = h.map(plt.scatter) relationships
>>> sns.pairplot(iris)  Plot pairwise bivariate distributions
>>> i = sns.JointGrid(x="x", Grid for bivariate plot with marginal 

y="y", univariate plots 
data=data)

>>> i = i.plot(sns.regplot,
sns.distplot)

>>> sns.jointplot("sepal_length",  Plot bivariate distribution
"sepal_width",
data=iris,
kind='kde')

Matrix Plots
>>> sns.heatmap(uniform_data,vmin=0,vmax=1)  Heatmap
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>>> from bokeh.plotting import figure
>>> p1 = figure(plot_width=300, tools='pan,box_zoom')
>>> p2 = figure(plot_width=300, plot_height=300, 

x_range=(0, 8), y_range=(0, 8))
>>> p3 = figure() 

>>> from bokeh.io import output_notebook, show
>>> output_notebook()

         Plotting

    Components 
>>> from bokeh.embed import components
>>> script, div = components(p)

Selection and Non-Selection Glyphs
>>> p = figure(tools='box_select')
>>> p.circle('mpg', 'cyl', source=cds_df, 

selection_color='red', 
nonselection_alpha=0.1)

Hover Glyphs
>>> from bokeh.models import HoverTool
>>> hover = HoverTool(tooltips=None, mode='vline')
>>> p3.add_tools(hover) 

      Colormapping
 >>> from bokeh.models import CategoricalColorMapper
>>> color_mapper = CategoricalColorMapper(

factors=['US', 'Asia', 'Europe'],
palette=['blue', 'red', 'green'])

>>> p3.circle('mpg', 'cyl', source=cds_df,
color=dict(field='origin', 

transform=color_mapper),
legend='Origin')

>>> from bokeh.io import output_file, show
>>> output_file('my_bar_chart.html', mode='cdn')

>>> from bokeh.models import ColumnDataSource
>>> cds_df = ColumnDataSource(df)

         Data Also see Lists, NumPy & Pandas

Under the hood, your data is converted to Column Data 
Sources. You can also do this manually:

Customized Glyphs

The Python interactive visualization library Bokeh 
enables high-performance visual presentation of 
large datasets in modern web browsers. 

Bokeh’s mid-level general purpose bokeh.plotting 
interface is centered around two main components: data 
and glyphs.

The basic steps to creating plots with the bokeh.plotting 
interface are:

1. Prepare some data: 
Python lists, NumPy arrays, Pandas DataFrames and other sequences of values

2. Create a new plot
3. Add renderers for your data, with visual customizations
4. Specify where to generate the output
5. Show or save the results

+ =
        data glyphs             plot

>>> from bokeh.plotting import figure
>>> from bokeh.io import output_file, show
>>> x = [1, 2, 3, 4, 5]
>>> y = [6, 7, 2, 4, 5]
>>> p = figure(title="simple line example", 

x_axis_label='x', 
y_axis_label='y')

>>> p.line(x, y, legend="Temp.", line_width=2)
>>> output_file("lines.html")
>>> show(p)

Step 4

Step 2

Step 1

Step 5

Step 3

          Renderers & Visual Customizations

2

Scatter Markers
>>> p1.circle(np.array([1,2,3]), np.array([3,2,1]), 

fill_color='white')
>>> p2.square(np.array([1.5,3.5,5.5]), [1,4,3], 

                       color='blue', size=1)
Line Glyphs

>>> p1.line([1,2,3,4], [3,4,5,6], line_width=2)
>>> p2.multi_line(pd.DataFrame([[1,2,3],[5,6,7]]),

pd.DataFrame([[3,4,5],[3,2,1]]),
color="blue")

3
Glyphs

         Output & Export4

1

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame(np.array([[33.9,4,65, 'US'],

[32.4,4,66, 'Asia'],
                                [21.4,4,109, 'Europe']]), 

 columns=['mpg','cyl', 'hp', 'origin'],
index=['Toyota', 'Fiat', 'Volvo'])

Also see Data

HTML

US

Asia

Europe

Grid Layout
>>> from bokeh.layouts import gridplot
>>> row1 = [p1,p2]
>>> row2 = [p3]
>>> layout = gridplot([[p1,p2],[p3]])

Tabbed Layout
>>> from bokeh.models.widgets import Panel, Tabs
>>> tab1 = Panel(child=p1, title="tab1")
>>> tab2 = Panel(child=p2, title="tab2")
>>> layout = Tabs(tabs=[tab1, tab2])

Linked Plots

    Inside Plot Area
>>> p.legend.location = 'bottom_left'

    Outside Plot Area
>>> from bokeh.models import Legend
>>> r1 = p2.asterisk(np.array([1,2,3]), np.array([3,2,1])
>>> r2 = p2.line([1,2,3,4], [3,4,5,6])
>>> legend = Legend(items=[("One" ,[p1, r1]),("Two",[r2])], 
                    location=(0, -30))
>>> p.add_layout(legend, 'right')

Legend Location

    Linked Axes
>>> p2.x_range = p1.x_range
>>> p2.y_range = p1.y_range

    Linked Brushing
>>> p4 = figure(plot_width = 100,
               tools='box_select,lasso_select')
>>> p4.circle('mpg', 'cyl', source=cds_df)
>>> p5 = figure(plot_width = 200, 
               tools='box_select,lasso_select')
>>> p5.circle('mpg', 'hp', source=cds_df)
>>> layout = row(p4,p5)

>>> show(p1) >>> show(layout)   
>>> save(p1) >>> save(layout)

      Show or Save Your Plots5

>>> p.legend.orientation = "horizontal"
>>> p.legend.orientation = "vertical"

>>> p.legend.border_line_color = "navy"
>>> p.legend.background_fill_color = "white"

Legend Orientation

Legend Background & Border

Rows & Columns Layout
    Rows
>>> from bokeh.layouts import row
>>> layout = row(p1,p2,p3)

   Columns
>>> from bokeh.layouts import columns
>>> layout = column(p1,p2,p3)

   Nesting Rows & Columns
>>>layout = row(column(p1,p2), p3)

PNG
>>> from bokeh.io import export_png
>>> export_png(p, filename="plot.png")

SVG
>>> from bokeh.io import export_svgs
>>> p.output_backend = "svg"
>>> export_svgs(p, filename="plot.svg")

Notebook 

    Standalone HTML
>>> from bokeh.embed import file_html
>>> from bokeh.resources import CDN 
>>> html = file_html(p, CDN, "my_plot")
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Interacting With NumPy Also see NumPy

The SciPy library is one of the core packages for 
scientific computing that provides mathematical 
algorithms and convenience functions built on the 
NumPy extension of Python.

Index Tricks
>>> np.mgrid[0:5,0:5]  Create a dense meshgrid
>>> np.ogrid[0:2,0:2] Create an open meshgrid
>>> np.r_[[3,[0]*5,-1:1:10j] Stack arrays vertically (row-wise) 
>>> np.c_[b,c]	 Create stacked column-wise arrays 

Shape Manipulation

Polynomials 

Vectorizing Functions

Type Handling 

>>> np.angle(b,deg=True)   Return the angle of the complex argument
>>> g = np.linspace(0,np.pi,num=5) Create an array of evenly spaced values 
                                                                             (number of samples)
>>> g [3:] += np.pi
>>> np.unwrap(g) Unwrap 
>>> np.logspace(0,10,3) Create an array of evenly spaced values (log scale)

>>> np.select([c<4],[c*2]) Return values from a list of arrays depending on 
conditions

>>> misc.factorial(a)      Factorial
>>> misc.comb(10,3,exact=True)  Combine N things taken at k time
>>> misc.central_diff_weights(3)   Weights for Np-point central derivative
>>> misc.derivative(myfunc,1.0)   Find the n-th derivative of a function at a point

Other Useful Functions

>>> np.real(c) Return the real part of the array elements 
>>> np.imag(c) Return the imaginary part of the array elements
>>> np.real_if_close(c,tol=1000) Return a real array if complex parts close to 0
>>> np.cast['f'](np.pi)            Cast object to a data type

>>> def myfunc(a):
if a < 0: 

return a*2
else:

return a/2

>>> np.vectorize(myfunc) Vectorize functions

>>> from numpy import poly1d
>>> p = poly1d([3,4,5]) Create a polynomial object

>>> np.transpose(b) Permute array dimensions
>>> b.flatten() Flatten the array
>>> np.hstack((b,c)) Stack arrays horizontally (column-wise)
>>> np.vstack((a,b)) Stack arrays vertically (row-wise)
>>> np.hsplit(c,2) Split the array horizontally at the 2nd index
>>> np.vpslit(d,2)	 Split the array vertically at the 2nd index

>>> import numpy as np 
>>> a = np.array([1,2,3])
>>> b = np.array([(1+5j,2j,3j), (4j,5j,6j)])
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]])

>>> help(scipy.linalg.diagsvd)
>>> np.info(np.matrix)

Linear Algebra
You’ll use the linalg and sparse modules. Note that  scipy.linalg contains and expands on  numpy.linalg. 

>>> from scipy import linalg, sparse

Creating Matrices
>>> A = np.matrix(np.random.random((2,2)))
>>> B = np.asmatrix(b)
>>> C = np.mat(np.random.random((10,5)))
>>> D = np.mat([[3,4], [5,6]])

Also see NumPy

Basic Matrix Routines

  Inverse
>>> A.I Inverse
>>> linalg.inv(A) Inverse
>>> A.T Tranpose matrix
>>> A.H Conjugate transposition
>>> np.trace(A) Trace

  Norm
>>> linalg.norm(A) Frobenius norm
>>> linalg.norm(A,1) L1 norm (max column sum)
>>> linalg.norm(A,np.inf)      L inf norm (max row sum)
  Rank
>>> np.linalg.matrix_rank(C)   Matrix rank
  Determinant
>>> linalg.det(A) Determinant
  Solving linear problems
>>> linalg.solve(A,b) Solver for dense matrices
>>> E = np.mat(a).T Solver for dense matrices
>>> linalg.lstsq(D,E) Least-squares solution to linear matrix 

equation
   Generalized inverse
>>> linalg.pinv(C) Compute the pseudo-inverse of a matrix 

(least-squares solver)
>>> linalg.pinv2(C) Compute the pseudo-inverse of a matrix 

(SVD)

  Addition
>>> np.add(A,D) Addition
 Subtraction
>>> np.subtract(A,D) Subtraction
 Division
>>> np.divide(A,D) Division
 Multiplication
>>> np.multiply(D,A) Multiplication
>>> np.dot(A,D) Dot product
>>> np.vdot(A,D) Vector dot product
>>> np.inner(A,D) Inner product
>>> np.outer(A,D) Outer product
>>> np.tensordot(A,D) Tensor dot product
>>> np.kron(A,D) Kronecker product
  Exponential Functions
>>> linalg.expm(A) Matrix exponential  
>>> linalg.expm2(A) Matrix exponential (Taylor Series)
>>> linalg.expm3(D) Matrix exponential (eigenvalue 
				             decomposition)

  Logarithm Function
>>> linalg.logm(A) Matrix logarithm 
  Trigonometric Tunctions
>>> linalg.sinm(D) Matrix sine
>>> linalg.cosm(D) Matrix cosine
>>> linalg.tanm(A) Matrix tangent
  Hyperbolic Trigonometric Functions
>>> linalg.sinhm(D) Hypberbolic matrix sine
>>> linalg.coshm(D) Hyperbolic matrix cosine
>>> linalg.tanhm(A) Hyperbolic matrix tangent
  Matrix Sign Function 
>>> np.sigm(A) Matrix sign function
  Matrix Square Root
>>> linalg.sqrtm(A) Matrix square root
  Arbitrary Functions
>>> linalg.funm(A, lambda x: x*x)    Evaluate matrix function

Matrix Functions

Asking For Help

Decompositions

  Eigenvalues and Eigenvectors
>>> la, v = linalg.eig(A)       Solve ordinary or generalized 

eigenvalue problem for square matrix
>>> l1, l2 = la Unpack eigenvalues
>>> v[:,0] First eigenvector
>>> v[:,1] Second eigenvector
>>> linalg.eigvals(A) Unpack eigenvalues
  Singular Value Decomposition 
>>> U,s,Vh = linalg.svd(B)      Singular Value Decomposition (SVD)
>>> M,N = B.shape
>>> Sig = linalg.diagsvd(s,M,N) Construct sigma matrix in SVD
  LU Decomposition
>>> P,L,U = linalg.lu(C) LU Decomposition

>>> F = np.eye(3, k=1) Create a 2X2 identity matrix
>>> G = np.mat(np.identity(2)) Create a 2x2 identity matrix   
>>> C[C > 0.5] = 0 
>>> H = sparse.csr_matrix(C)   Compressed Sparse Row matrix
>>> I = sparse.csc_matrix(D)   Compressed Sparse Column matrix
>>> J = sparse.dok_matrix(A)   Dictionary Of Keys matrix
>>> E.todense() Sparse matrix to full matrix
>>> sparse.isspmatrix_csc(A)   Identify sparse matrix

Creating Sparse Matrices

  Inverse
>>> sparse.linalg.inv(I) Inverse

  Norm 
>>> sparse.linalg.norm(I)       Norm

 Solving linear problems 
>>> sparse.linalg.spsolve(H,I)  Solver for sparse matrices

Sparse Matrix Routines

Sparse Matrix Functions
>>> sparse.linalg.expm(I)       Sparse matrix exponential

Sparse Matrix Decompositions
>>> la, v = sparse.linalg.eigs(F,1)  Eigenvalues and eigenvectors
>>> sparse.linalg.svds(H, 2) SVD
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  Loading The Data Also see NumPy & Pandas

Scikit-learn is an open source Python library that 
implements a range of machine learning, 
preprocessing, cross-validation and visualization 
algorithms using a unified interface.

>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0

Your data needs to be numeric and stored as NumPy arrays or SciPy sparse 
matrices. Other types that are convertible to numeric arrays, such as Pandas 
DataFrame, are also acceptable.

  Create Your Model

  Model Fitting

  Prediction

  Tune Your Model

  Evaluate Your Model’s Performance

Grid Search

Randomized Parameter Optimization

   Linear Regression
>>> from sklearn.linear_model import LinearRegression
>>> lr = LinearRegression(normalize=True)

   Support Vector Machines (SVM)
>>> from sklearn.svm import SVC
>>> svc = SVC(kernel='linear')
   Naive Bayes 
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()

   KNN
>>> from sklearn import neighbors
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)

   Supervised learning
>>> lr.fit(X, y)
>>> knn.fit(X_train, y_train)
>>> svc.fit(X_train, y_train)

   Unsupervised Learning
>>> k_means.fit(X_train)
>>> pca_model = pca.fit_transform(X_train)

   Accuracy Score
>>> knn.score(X_test, y_test)

>>> from sklearn.metrics import accuracy_score
>>> accuracy_score(y_test, y_pred)

  Classification Report
>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred))

  Confusion Matrix
>>> from sklearn.metrics import confusion_matrix
>>> print(confusion_matrix(y_test, y_pred))

Cross-Validation
>>> from sklearn.cross_validation import cross_val_score
>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))

Classification Metrics

>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), 

"metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn, 
                        param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)

>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), 

"weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn, 

param_distributions=params, 	
       cv=4,
       n_iter=8, 
       random_state=5)

>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)

A Basic Example
>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)

Supervised Learning Estimators

Unsupervised Learning Estimators
   Principal Component Analysis (PCA)
>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=0.95)

   K Means
>>> from sklearn.cluster import KMeans
>>> k_means = KMeans(n_clusters=3, random_state=0)

Fit the model to the data

Fit the model to the data
Fit to data, then transform it

  Preprocessing The Data
Standardization

Normalization
>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)

  Training And Test Data
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(X, 

 y, 
 random_state=0)

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)

Binarization
>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)

Encoding Categorical Features

   Supervised Estimators
>>> y_pred = svc.predict(np.random.random((2,5)))
>>> y_pred = lr.predict(X_test)
>>> y_pred = knn.predict_proba(X_test)

   Unsupervised Estimators
>>> y_pred = k_means.predict(X_test)

>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)

Imputing Missing Values

Predict labels
Predict labels
Estimate probability of a label

Predict labels in clustering algos

>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit_transform(X_train)

Generating Polynomial Features
>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly = PolynomialFeatures(5)
>>> poly.fit_transform(X)       

Regression Metrics
   Mean Absolute Error
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2]
>>> mean_absolute_error(y_true, y_pred)

   Mean Squared Error
>>> from sklearn.metrics import mean_squared_error
>>> mean_squared_error(y_test, y_pred)

   R² Score
>>> from sklearn.metrics import r2_score
>>> r2_score(y_true, y_pred)

Clustering Metrics
   Adjusted Rand Index
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(y_true, y_pred)  

  Homogeneity
>>> from sklearn.metrics import homogeneity_score
>>> homogeneity_score(y_true, y_pred) 

 V-measure
>>> from sklearn.metrics import v_measure_score
>>> metrics.v_measure_score(y_true, y_pred)    

Estimator score method

Metric scoring functions 

Precision, recall, f1-score
and support
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Keras
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  Data Also see NumPy, Pandas  & Scikit-Learn

Keras is a powerful and easy-to-use deep learning library for 
Theano and TensorFlow that provides a high-level neural 
networks API to develop and evaluate deep learning models. 

  Model Architecture

  Model Fine-tuning 
Optimization Parameters
>>> from keras.optimizers import RMSprop
>>> opt = RMSprop(lr=0.0001, decay=1e-6)
>>> model2.compile(loss='categorical_crossentropy',

optimizer=opt,
metrics=['accuracy'])

A Basic Example
>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>> data = np.random.random((1000,100))
>>> labels = np.random.randint(2,size=(1000,1))
>>> model = Sequential()
>>> model.add(Dense(32,

activation='relu', 
input_dim=100))

>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile(optimizer='rmsprop',

loss='binary_crossentropy',
metrics=['accuracy'])

>>> model.fit(data,labels,epochs=10,batch_size=32)
>>> predictions = model.predict(data)

  Preprocessing

One-Hot Encoding
>>> from keras.utils import to_categorical
>>> Y_train = to_categorical(y_train, num_classes)
>>> Y_test = to_categorical(y_test, num_classes) 
>>> Y_train3 = to_categorical(y_train3, num_classes) 
>>> Y_test3 = to_categorical(y_test3, num_classes)

Also see NumPy & Scikit-Learn

>>> model.output_shape Model output shape 
>>> model.summary()           Model summary representation 
>>> model.get_config()          Model configuration
>>> model.get_weights()      List all weight tensors in the model

Your data needs to be stored as NumPy arrays or as a list of NumPy arrays. Ide-
ally, you split the data in training and test sets, for which you can also resort 
to the train_test_split module of sklearn.cross_validation.

Early Stopping
>>> from keras.callbacks import EarlyStopping
>>> early_stopping_monitor = EarlyStopping(patience=2)
>>> model3.fit(x_train4, 

y_train4, 
             batch_size=32,

epochs=15, 
validation_data=(x_test4,y_test4), 

             callbacks=[early_stopping_monitor])

  Inspect Model
Sequential Model 
>>> from keras.models import Sequential
>>> model = Sequential()
>>> model2 = Sequential()
>>> model3 = Sequential()

Multilayer Perceptron (MLP)

>>> from keras.layers import Dropout  
>>> model.add(Dense(512,activation='relu',input_shape=(784,)))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(512,activation='relu'))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(10,activation='softmax'))

Standardization/Normalization

Sequence Padding
>>> from keras.preprocessing import sequence
>>> x_train4 = sequence.pad_sequences(x_train4,maxlen=80)
>>> x_test4 = sequence.pad_sequences(x_test4,maxlen=80) 

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(x_train2)
>>> standardized_X = scaler.transform(x_train2)
>>> standardized_X_test = scaler.transform(x_test2)

Keras Data Sets
>>> from keras.datasets import boston_housing, 

mnist, 
cifar10, 
imdb

>>> (x_train,y_train),(x_test,y_test) = mnist.load_data()
>>> (x_train2,y_train2),(x_test2,y_test2) = boston_housing.load_data()
>>> (x_train3,y_train3),(x_test3,y_test3) = cifar10.load_data()
>>> (x_train4,y_train4),(x_test4,y_test4) = imdb.load_data(num_words=20000)
>>> num_classes = 10

Convolutional Neural Network (CNN)
>>> from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten 
>>> model2.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:]))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(32,(3,3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))

>>> model2.add(Conv2D(64,(3,3), padding='same'))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(64,(3, 3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))

>>> model2.add(Flatten())
>>> model2.add(Dense(512))
>>> model2.add(Activation('relu'))
>>> model2.add(Dropout(0.5))
>>> model2.add(Dense(num_classes))
>>> model2.add(Activation('softmax'))

Recurrent Neural Network (RNN)

  Compile Model
  MLP: Binary Classification
>>> model.compile(optimizer='adam',   

  loss='binary_crossentropy',
metrics=['accuracy']) 

  MLP: Multi-Class Classification
>>> model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',
                 metrics=['accuracy'])

  MLP: Regression
>>> model.compile(optimizer='rmsprop', 

loss='mse', 
metrics=['mae']) 

>>> from keras.klayers import Embedding,LSTM
>>> model3.add(Embedding(20000,128))
>>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))
>>> model3.add(Dense(1,activation='sigmoid'))

  Prediction

  Evaluate Your Model's Performance
>>> score = model3.evaluate(x_test, 

y_test,
batch_size=32)

>>> model3.predict(x_test4, batch_size=32)
>>> model3.predict_classes(x_test4,batch_size=32)

  Model Training
>>> model3.fit(x_train4, 

y_train4, 
             batch_size=32,

epochs=15,
verbose=1,
validation_data=(x_test4,y_test4)) 

>>> from keras.models import load_model
>>> model3.save('model_file.h5')
>>> my_model = load_model('my_model.h5')

  Save/ Reload Models

>>> from keras.layers import Dense  
>>> model.add(Dense(12, 

input_dim=8, 
kernel_initializer='uniform', 
activation='relu'))

>>> model.add(Dense(8,kernel_initializer='uniform',activation='relu'))
>>> model.add(Dense(1,kernel_initializer='uniform',activation='sigmoid'))

>>> model.add(Dense(64,activation='relu',input_dim=train_data.shape[1]))
>>> model.add(Dense(1))

Binary Classification

Multi-Class Classification

Regression

Other
>>> from urllib.request import urlopen
>>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/
ml/machine-learning-databases/pima-indians-diabetes/
pima-indians-diabetes.data"),delimiter=",")
>>> X = data[:,0:8]
>>> y = data [:,8]

>>> from sklearn.model_selection import train_test_split 
>>> X_train5,X_test5,y_train5,y_test5 = train_test_split(X,
                                                         y,

test_size=0.33,
random_state=42)

Train and Test Sets

  Recurrent Neural Network
>>> model3.compile(loss='binary_crossentropy',

optimizer='adam',
metrics=['accuracy']) 
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Kernels provide computation and communication with front-end interfaces 
like the notebooks. There are three main kernels: 

Installing Jupyter Notebook will automatically install the IPython kernel. 

Create new notebook
Open an existing 
notebookMake a copy of the 

current notebook
Rename notebook

Writing Code And Text

Save current notebook 
and record checkpoint

Revert notebook to a 
previous checkpoint

Preview of the printed 
notebook

Download notebook as
- IPython notebook
- Python
- HTML
- Markdown
- reST
- LaTeX
- PDF

Close notebook & stop 
running any scripts

IRkernel IJulia

Cut currently selected cells 
to clipboard

Copy cells from 
clipboard to current 
cursor positionPaste cells from 

clipboard above 
current cell

Paste cells from 
clipboard below 
current cellPaste cells from 

clipboard on top 
of current cel Delete current cells

Revert “Delete Cells” 
invocation

Split up a cell from 
current cursor 
position

Merge current cell 
with the one above

Merge current cell 
with the one below

Move current cell up Move current cell 
downAdjust metadata 

underlying the 
current notebook

Find and replace 
in selected cells

Insert image in 
selected cells

Restart kernel

Restart kernel & run 
all cells 

Restart kernel & run 
all cells 

Interrupt kernel

Interrupt kernel & 
clear all output
Connect back to a 
remote notebook

Run other installed 
kernels

Code and text are encapsulated by 3 basic cell types: markdown cells, code 
cells, and raw NBConvert cells.

Edit Cells

Insert Cells

View Cells

Notebook widgets provide the ability to visualize and control changes 
in your data, often as a control like a slider, textbox, etc. 

You can use them to build interactive GUIs for your notebooks or to 
synchronize stateful and stateless information between Python and 
JavaScript.

Toggle display of Jupyter 
logo and filename Toggle display of toolbar

Toggle line numbers 
in cells

Toggle display of cell 
action icons:

- None
- Edit metadata
- Raw cell format
- Slideshow
- Attachments
- Tags

Add new cell above the 
current one

Add new cell below the 
current one

Executing Cells

Run selected cell(s) Run current cells down 
and create a new one 
below

Run current cells down 
and create a new one 
above Run all cells

Save notebook 
with interactive 
widgets

Download serialized 
state of all widget 
models in use

Embed current 
widgets

Walk through a UI tour

List of built-in keyboard 
shortcutsEdit the built-in 

keyboard shortcuts Notebook help topics
Description of 
markdown available 
in notebook

About Jupyter Notebook

Information on 
unofficial Jupyter 
Notebook extensions

Python help topics
IPython help topics

NumPy help topics
 SciPy help topics

Pandas help topics
 SymPy help topics

Matplotlib help topics

Run all cells above the 
current cell

Run all cells below 
the current cell

Change the cell type of 
current cell

toggle, toggle 
scrolling and clear 
current outputstoggle, toggle 

scrolling and clear 
all output

1. Save and checkpoint 
2. Insert cell below
3. Cut cell
4. Copy cell(s)
5. Paste cell(s) below
6. Move cell up
7. Move cell down
8. Run current cell 

9. Interrupt kernel
10. Restart kernel
11. Display characteristics
12. Open command palette
13. Current kernel
14. Kernel status
15. Log out from notebook server

Command Mode:

Edit Mode:

1 2 3 4 5 6 7 8 9 10 11 12

13 14

15

Copy attachments of 
current cell

Remove cell 
attachments

Paste attachments of 
current cell



​ Jupyter Notebook Markdown Cheatsheet​ ​  From ​SqlBak.com​ with 💙 

#⌴Header 1

Header 1

========

Header 1 

##⌴Header 2

Header 2

--------

Header 2 

###⌴Header 3 Header 3 
####⌴Header 4 Header 4 

#####⌴Header 5 Header 5 

*italics*

_italics_

italics 

\*literal asterisks\* *literal asterisks*

**bold**

__bold__

bold 

~~strikethrough~~ strikethrough 

1.⌴First item

2.⌴Second item

⌴1.⌴Subitem

1. First item
2. Second item

A. Subitem

*⌴Item 1

⌴Indent

-⌴Item 2

⌴+⌴Item 3

● Item 1
Indent

● Item 2
■ Item 3

- [x] Done

- [ ] To do

● ☑ Done
● ▯To do

A

Line⌴⌴

Break

A Line 
Break 

---

* * *

___________________________

_ 

<a id="anchor"></a>

[Go to anchor](#anchor)

#⌴Top Header

[Go to header](#Top-Header)

Go to anchor 

https://sqlbak.com

[Link](https://sqlbak.com

"optional title")

Click [here][id]

[id]:https://sqlbak.com

Link 

> blockquote text

```python

print('hello');

```

`inline_code();`

print ​( ​'hello' ​);

|Left  |Center|Right|

|:-----|:----:|----:|

|1 |A |C |

|2 |B |D |

![alt text](logo.png "Title")

![][id]

[id]:logo.png "Title"

$$\sqrt{k}$$

Inline: $\sqrt{k}$

√k

[![Img Alt

Text](http://img.youtube.com/vi/

aZCXOw707nc ​/0.jpg)](https://yout
u.be/​aZCXOw707nc​ "Video Title")

blockquote text 

Left Center Right 

1 A C 

2 B D 

https://sqlbak.com/
https://sqlbak.com/
https://sqlbak.com/


Natural Language Processing with Python & nltk Cheat Sheet
by RJ Murray (murenei) via cheatography.com/58736/cs/15485/

Handling Text

text= ​'Some words' assign string

list( ​text) Split text into character tokens

set(t ​ext) Unique tokens

len(t ​ext) Number of characters

Accessing corpora and lexical resources

from nltk.c ​orpus import
brown

import Corpus ​Reader object

brown.wo ​rds ​(te ​xt_id) Returns pretok ​enised document as list
of words

brown.fi ​lei ​ds() Lists docs in Brown corpus

brown.ca ​teg ​ori ​es() Lists categories in Brown corpus

Tokeni ​zation

text.s ​pl ​it( ​" ") Split by space

nltk.w ​or ​d_t ​oke ​niz ​er( ​text) nltk in-built word tokenizer

nltk.s ​en ​t_t ​oke ​niz ​e(doc) nltk in-built sentence tokenizer

Lemmat ​ization & Stemming

input ​="List listed lists listing
listin ​gs"

Different suffixes

words ​=in ​put.lo ​wer ​().s ​plit(' ') Normalize (lower ​case)
words

porte ​r=n ​ltk.Po ​rte ​rSt ​emmer Initialise Stemmer

[port ​er.s ​tem(t) for t in words] Create list of stems

WNL=n ​ltk.Wo ​rdN ​etL ​emm ​ati ​zer() Initialise WordNet
lemmatizer

[WNL.l ​em ​mat ​ize(t) for t in words] Use the lemmatizer

Part of Speech (POS) Tagging

nltk.h ​el ​p.u ​pen ​n_t ​ags ​et
( ​'MD')

Lookup definition for a POS tag

nltk.p ​os ​_ta ​g(w ​ords) nltk in-built POS tagger

<use an altern ​ative tagger to illustrate
ambigu ​ity>

Sentence Parsing

g=nlt ​k.d ​ata.lo ​ad( ​'gr ​amm ​ar.c ​fg') Load a grammar from a file

g=nlt ​k.C ​FG.f ​ro ​mst ​rin ​g("""...""
")

Manually define grammar

parse ​r=n ​ltk.Ch ​art ​Par ​ser(g) Create a parser out of the
grammar

trees ​=pa ​rse ​r.p ​ars ​e_a ​ll( ​text)

for tree in trees: ... print tree

from nltk.c ​orpus import treebank

treeb ​ank.pa ​rse ​d_s ​ent ​s(' ​wsj ​_00 ​0
1.m ​rg')

Treebank parsed sentences

Text Classi ​fic ​ation

from sklear ​n.f ​eat ​ure ​_ex ​tra ​cti ​on.text import
CountV ​ect ​orizer, TfidfV ​ect ​orizer

vect= ​Cou ​ntV ​ect ​ori ​zer ​().f ​it ​(X_ ​tr
ain)

Fit bag of words model to
data

vect.g ​et ​_fe ​atu ​re_ ​nam ​es() Get features

vect.t ​ra ​nsf ​orm ​(X_ ​train) Convert to doc-term matrix

Entity Recogn ​ition (Chunk ​ing ​/Ch ​inking)

g="NP: {<D ​T>? ​<JJ ​>*< ​NN> ​}" Regex chunk grammar

cp=nl ​tk.R ​eg ​exp ​Par ​ser(g) Parse grammar

ch=cp.pa ​rse ​(po ​s_s ​ent) Parse tagged sent. using grammar

print ​(ch) Show chunks

ch.dr ​aw() Show chunks in IOB tree

cp.ev ​alu ​ate ​(te ​st_ ​sents) Evaluate against test doc

sents ​=nl ​tk.c ​or ​pus.tr ​eeb ​ank.ta ​gge ​d_s ​ents()

print ​(nl ​tk.n ​e_ ​chu ​nk( ​sent)) Print chunk tree
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Natural Language Processing with Python & nltk Cheat Sheet
by RJ Murray (murenei) via cheatography.com/58736/cs/15485/

RegEx with Pandas & Named Groups

df=pd.Da ​taF ​ram ​e(t ​ime ​_sents, column ​s=[ ​'te ​xt'])

df['t ​ext ​'].s ​tr.sp ​lit ​().s ​tr.len()

df['t ​ext ​'].s ​tr.co ​nta ​ins ​('w ​ord')

df['t ​ext ​'].s ​tr.co ​unt ​(r' ​\d')

df['t ​ext ​'].s ​tr.fi ​nda ​ll( ​r'\d')

df['t ​ext ​'].s ​tr.re ​pla ​ce( ​r' ​\w+d ​ay\b', '???')

df['t ​ext ​'].s ​tr.re ​pla ​ce( ​r'( ​\w)', lambda x: x.grou ​ps( ​)
[0 ​][:3])

df['t ​ext ​'].s ​tr.ex ​tra ​ct( ​r'( ​\d? ​\d) ​:( ​\d\d)')

df['t ​ext ​'].s ​tr.ex ​tra ​cta ​ll( ​r'( ​(\d ​?\d ​):( ​\d\d) ?
([ap] ​m))')

df['t ​ext ​'].s ​tr.ex ​tra ​cta ​ll( ​r'( ​?P< ​dig ​its ​>\d)')
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spaCy Cheat Sheet
by Nuozhi via cheatography.com/122797/cs/22963/

Init

from spacy.lang.en import

English

nlp = English()

Basic

doc = nlp("SOME TEXTS")

span = doc[i:j]

token = doc[i]

Pre-tr ​ained Model

nlp =

spacy.load('en_core_web_sm')

doc = nlp(MY ​_TEXT)

Name entity

doc.ents

.text

.label_

spacy.t ​okens

Doc Doc(n ​lp.v ​ocab, words= ​‐
words, spaces = spaces)

Span Span(doc, i, j, label= ​" ​‐
PER ​SON ​")

index: i, j
words: a collection of words
spaces: a collecture of booleans

Matcher

matcher =

spacy.matcher.Matcher(nlp.vocab)

matches = matche ​r(doc)

[(id, start, end)]

Add pattern to matcher

pattern = [ { key: value } ]

matche ​r.a ​dd( ​" ​PAT ​TER ​N_N ​AME ​",
None, pattern)

Two types of key: 
1. regex pattern
2. label (i.e. POS, entity)

Phrase matching

matcher =

spacy.matcher.PhraseMatcher(nlp.vocab)

pattern = nlp("Golden Retrie ​ver ​")
matche ​r.a ​dd( ​" ​DOG ​", None, pattern)
for match_id, start, end in matche ​‐
r(doc):

​ ​ ​ span = doc[st ​art ​:end]

Similarity

word vector token.v ​ector

Doc doc1.s ​im ​ila ​rit ​y(d ​oc2)

Span span1.si ​mil ​ari ​ty( ​span2)

Token token ​1.s ​imi ​lar ​ity ​(to ​ken2)

Doc by
Token

doc.s ​imi ​lar ​ity ​(to ​ken)

return a similarity score 0~1
NOT for small model
cosine similarity by default

Pipeline

nlp.p ​ipe ​_names
nlp.p ​ipe ​line

Add pipeline component

def fn(doc):

​ ​ ​ # function body
​ ​ ​ ​return doc

nlp.ad ​d_p ​ipe(fn, last, first, before,
after)

Set custom attributes

add
metadata

doc._.ATTR = " ​ATT ​RIBUTE
NAME"

register
globally

Doc.s ​et_ ​ext ​ens ​ion ​("AT ​TR",
defaul ​t=N ​one)

set to doc, tokens, spans
access property via ._

Extension attribute types

attribute Token.se ​t_e ​xte ​nsi ​‐
on( ​" ​ATT ​R", defaut ​‐
=Bool)

property Span.s ​et ​_ex ​ten ​sio ​‐
n("P ​ROP ​", getter ​=fn)

method Doc.s ​et_ ​ext ​ens ​ion ​‐
("ME ​THO ​D", method ​‐
=fn)

Boost up

nlp.pipe(DATA)

Passing in context

data = [ ("SOME TEXTS",

{"KEY": "VAL"}), (...), ]

# Method 1

for doc, ctx in nlp.pi ​pe( ​‐
data, as_tup ​le= ​True):
​ ​ ​ ​print( doc.ATTR,

ctx[KEY] )

# Method 2

Doc.se ​t_e ​xte ​nsi ​on( ​" ​KEY ​",
defaul ​t=None)
for doc, ctx in nlp.pi ​pe( ​‐
data, as_tup ​les ​=True):
​ ​ ​ ​doc._.KEY = ctx["KE ​Y"]

Using tokenizer only

# Method 1

doc = nlp.ma ​ke_ ​doc ​("SOME
TEXTS")

# Method 2

with nlp.di ​sab ​le_ ​pip ​es( ​" ​tag ​‐
ger ​", " ​par ​ser ​"):
​ ​ ​ doc = nlp(text)
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Cheat sheet Version 3.5.0

Quick start API

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100)
Y = np.cos(X)

fig, ax = plt.subplots()
ax.plot(X, Y, color=’green’)

fig.savefig(“figure.pdf”)
fig.show()

Anatomy of a figure

0 1 2 3 40.25 0.50 0.75 1.25 1.50 1.75 2.25 2.50 2.75 3.25 3.50 3.75
X axis label

0

1

2

3

4

Y 
ax

is 
la

be
l

Minor tick label

Major tick

Minor tick

Major tick label

X axis label

Y axis label

Title

Line
(line plot)

Line
(line plot)

Markers
(scatter plot)

Grid

Legend

Axes
Figure

Spines

Anatomy of a figure
Blue signal
Red signal

Subplots layout API

subplot[s](rows,cols,…) API
fig, axs = plt.subplots(3, 3)

G = gridspec(rows,cols,…) API
ax = G[0,:]

ax.inset_axes(extent) API

d=make_axes_locatable(ax) API
ax = d.new_horizontal(’10%’)

Getting help

matplotlib.org
github.com/matplotlib/matplotlib/issues
discourse.matplotlib.org
stackoverflow.com/questions/tagged/matplotlib
gitter.im/matplotlib
twitter.com/matplotlib
Matplotlib users mailing list

Basic plots

1234567
123
456
7 plot([X],Y,[fmt],…) API

X, Y, fmt, color, marker, linestyle

1234567
123
456
7 scatter(X,Y,…) API

X, Y, [s]izes, [c]olors, marker, cmap

1234567
123
456
7 bar[h](x,height,…) API

x, height, width, bottom, align, color

1234567
123
456
7 imshow(Z,…) API

Z, cmap, interpolation, extent, origin

1234567
123
456
7 contour[f]([X],[Y],Z,…) API

X, Y, Z, levels, colors, extent, origin

321012332
10
12
3 pcolormesh([X],[Y],Z,…) API

X, Y, Z, vmin, vmax, cmap

1234567
123
456
7 quiver([X],[Y],U,V,…) API

X, Y, U, V, C, units, angles

1234567
123
456
7 pie(X,…) API

Z, explode, labels, colors, radius

1234567
123
456
7

TEXT
text(x,y,text,…) API
x, y, text, va, ha, size, weight, transform

1234567
123
456
7 fill[_between][x](…) API

X, Y1, Y2, color, where

Advanced plots

1234567
123
456
7 step(X,Y,[fmt],…) API

X, Y, fmt, color, marker, where

246
123
456
7 boxplot(X,…) API

X, notch, sym, bootstrap, widths

1234567
123
456
7 errorbar(X,Y,xerr,yerr,…) API

X, Y, xerr, yerr, fmt

1234567111213141516171 hist(X, bins, …) API
X, bins, range, density, weights

1234567
123
456
7 violinplot(D,…) API

D, positions, widths, vert

1234567
123
456
7 barbs([X],[Y], U, V, …) API

X, Y, U, V, C, length, pivot, sizes

1234567
123
456
7 eventplot(positions,…) API

positions, orientation, lineoffsets

1234567
123
456
7 hexbin(X,Y,C,…) API

X, Y, C, gridsize, bins

Scales API

ax.set_[xy]scale(scale,…)

2 0 22.5
0.0

- +

linear
any values

10 210 11002.5
0.0

0 +

log
values > 0

10001002.5
0.0

- +

symlog
any values

1
2
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0.0

0 1

logit
0 < values < 1

Projections API

subplot(…,projection=p)
p=’polar’ p=’3d’

p=Orthographic() API
from cartopy.crs import Cartographic

Lines API

"-" ":" "--" "-." (0,(0.01,2))

linestyle or ls

"butt" "round" "projecting"

capstyle or dash_capstyle

Markers API

'$ $''$ $''$ $''$ $''$ $''$ $''$ $''$ $''$ $''$ $''$ $''$ $'

'1' '2' '3' '4' '+' 'x' '|' '_' 4 5 6 7

'.' 'o' 's' 'P' 'X' '*' 'p' 'D' '<' '>' '^' 'v'

10 [0, -1] (25, 5) [0, 25, -1]

markevery

Colors API

0 2 4 6 8 10 12 14 16
0
1

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 ’Cn’
b g r c m y k w ’x’

0 2 4 6 8 10 12 14 16
0
1

DarkRed Firebrick Crimson IndianRed Salmon ’name’

0 2 4 6 8 10 12 14 16
0
1

(1,0,0) (1,0,0,0.75) (1,0,0,0.5) (1,0,0,0.25) (R,G,B[,A])

0 2 4 6 8 10 12 14 16
0
1

#FF0000 #FF0000BB #FF000088 #FF000044 ’#RRGGBB[AA]’

0 2 4 6 8 10 12 14 16
0
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ’x.y’

Colormaps API

plt.get_cmap(name)

Uniform
viridis
magma
plasma

Sequential
Greys
YlOrBr
Wistia

Diverging
Spectral
coolwarm
RdGy

Qualitative
tab10
tab20

Cyclic
twilight

Tick locators API

from matplotlib import ticker
ax.[xy]axis.set_[minor|major]_locator(locator)

ticker.NullLocator()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ticker.MultipleLocator(0.5)

0 1 5
ticker.FixedLocator([0, 1, 5])

0.0 2.5 5.0
ticker.LinearLocator(numticks=3)

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
ticker.IndexLocator(base=0.5, offset=0.25)

0 1 2 3 4 5
ticker.AutoLocator()

0.0 1.5 3.0 4.5
ticker.MaxNLocator(n=4)

103 104 105 106 107 108 109 1010

ticker.LogLocator(base=10, numticks=15)

Tick formatters API

from matplotlib import ticker
ax.[xy]axis.set_[minor|major]_formatter(formatter)

ticker.NullFormatter()

0 1 2 3 4 50.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50
ticker.FixedFormatter(['', '0', '1', ...])

[0.00] [1.00] [2.00] [3.00] [4.00] [5.00]
ticker.FuncFormatter(lambda x, pos: "[%.2f]" % x)

>0< >1< >2< >3< >4< >5<
ticker.FormatStrFormatter('>%d<')

0 1 2 3 4 5
ticker.ScalarFormatter()

0.0 1.0 2.0 3.0 4.0 5.0
ticker.StrMethodFormatter('{x}')

0% 20% 40% 60% 80% 100%
ticker.PercentFormatter(xmax=5)

Ornaments
ax.legend(…) API
handles, labels, loc, title, frameon

Legend

Label 1

Label 2

Label 3

Label 4

handletextpad
handlelength

columnspacing

labelspacing

borderpad

handle
label

title

borderaxespad

markerfacecolor (mfc)

markeredgecolor (mec)

numpoints or scatterpoints

ax.colorbar(…) API
mappable, ax, cax, orientation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ax.annotate(…) API
text, xy, xytext, xycoords, textcoords, arrowprops

text
xy

xycoords
xytext

textcoords

Event handling API

fig, ax = plt.subplots()
def on_click(event):
print(event)

fig.canvas.mpl_connect(
’button_press_event’, on_click)

Animation API

import matplotlib.animation as mpla

T = np.linspace(0, 2*np.pi, 100)
S = np.sin(T)
line, = plt.plot(T, S)
def animate(i):

line.set_ydata(np.sin(T+i/50))
anim = mpla.FuncAnimation(

plt.gcf(), animate, interval=5)
plt.show()

Styles API

plt.style.use(style)
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0 1 2 3 4 5 6
1.0

0.5
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grayscale

0 1 2 3 4 5 6
1.0

0.5
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ggplot
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seaborn
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1.0

0.5
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1.0
fast
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1.0
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1.0
bmh
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1.0
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0.0

0.5

1.0
Solarize_Light2

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
seaborn-notebook

Quick reminder
ax.grid()
ax.patch.set_alpha(0)
ax.set_[xy]lim(vmin, vmax)
ax.set_[xy]label(label)
ax.set_[xy]ticks(list)
ax.set_[xy]ticklabels(list)
ax.set_[sup]title(title)
ax.tick_params(width=10, …)
ax.set_axis_[on|off]()

fig.tight_layout()
plt.gcf(), plt.gca()
mpl.rc(’axes’, linewidth=1, …)
fig.patch.set_alpha(0)
text=r’$\frac{-e^{i\pi}}{2^n}$’

Keyboard shortcuts API

ctrl + s Save ctrl + w Close plot
r Reset view f Fullscreen 0/1
f View forward b View back
p Pan view o Zoom to rect
x X pan/zoom y Y pan/zoom
g Minor grid 0/1 G Major grid 0/1
l X axis log/linear L Y axis log/linear

Ten simple rules READ

1. Know Your Audience
2. Identify Your Message
3. Adapt the Figure
4. Captions Are Not Optional
5. Do Not Trust the Defaults
6. Use Color Effectively
7. Do Not Mislead the Reader
8. Avoid “Chartjunk”
9. Message Trumps Beauty
10. Get the Right Tool

https://matplotlib.org/tutorials/introductory/pyplot.html
https://matplotlib.org/tutorials/intermediate/gridspec.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.GridSpec.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.inset_axes.html
https://matplotlib.org/mpl_toolkits/axes_grid/users/axes_divider.html
https://matplotlib.org
https://github.com/matplotlib/matplotlib/issues
https://discourse.matplotlib.org
https://stackoverflow.com/questions/tagged/matplotlib
https://gitter.im/matplotlib/matplotlib
https://twitter.com/matplotlib
https://mail.python.org/mailman/listinfo/matplotlib-users
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolormesh.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.fill.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.step.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.errorbar.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.violinplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barbs.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.eventplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html
https://matplotlib.org/stable/api/scale_api.html
https://matplotlib.org/stable/api/projections_api.html
https://matplotlib.org/stable/api/toolkits/mplot3d.html
https://matplotlib.org/gallery/lines_bars_and_markers/linestyles.html
https://matplotlib.org/stable/api/markers_api.html
https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/stable/api/ticker_api.html
https://matplotlib.org/stable/api/ticker_api.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.annotate.html
https://matplotlib.org/users/event_handling.html
https://matplotlib.org/stable/api/animation_api.html
https://matplotlib.org/tutorials/introductory/customizing.html
https://matplotlib.org/users/navigation_toolbar.html
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833


Axes adjustments API

plt.subplots_adjust( … )

left wspace rightbottom

hspace

top

figure width
fig
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Extent & origin API

ax.imshow( extent=…, origin=… )

0

5
(0,0)

(4,4)

origin="upper"

extent=[0,10,0,5]

0 10

0

5

(0,0)

(4,4)
origin="lower"

extent=[0,10,0,5]
0 10

(0,0)

(4,4)
origin="lower"

extent=[10,0,0,5]

(0,0)

(4,4)

origin="upper"

extent=[10,0,0,5]

Text alignments API

ax.text( …, ha=… , va=…, …)

Matplotlib  top

 center
 baseline
 bottom

left center right
(0,0)

(1,1)

Text parameters API

ax.text(…, family=…, size=…, weight=…)
ax.text(…, fontproperties=…)

The quick brown fox jumps over the lazy dog normal
The quick brown fox jumps over the lazy dog small-caps

The quick brown fox jumps over the lazy dog normal
The quick brown fox jumps over the lazy dog italic

The quick brown fox jumps over the lazy dog cursive
The quick brown fox jumps over the lazy dog sans
The quick brown fox jumps over the lazy dog serif
The quick brown fox jumps over the lazy dog monospace

The quick brown fox jumps over the lazy dog ultralight (100)
The quick brown fox jumps over the lazy dog normal (400)
The quick brown fox jumps over the lazy dog semibold (600)
The quick brown fox jumps over the lazy dog bold (700)
The quick brown fox jumps over the lazy dog black (900)

The quick brown fox xx-small (0.58)
The quick brown fox x-small (0.69)
The quick brown fox small (0.83)
The quick brown fox medium (1.00)
The quick brown fox large (1.20)
The quick brown fox x-large (1.44)
The quick brown fox xx-large (1.73)

Uniform colormaps

viridis
plasma
inferno
magma
cividis

Sequential colormaps

Greys
Purples
Blues
Greens
Oranges
Reds
YlOrBr
YlOrRd
OrRd
PuRd
RdPu
BuPu
GnBu
PuBu
YlGnBu
PuBuGn
BuGn
YlGn

Diverging colormaps

PiYG
PRGn
BrBG
PuOr
RdGy
RdBu
RdYlBu
RdYlGn
Spectral
coolwarm
bwr
seismic

Qualitative colormaps

Pastel1
Pastel2
Paired
Accent
Dark2
Set1
Set2
Set3
tab10
tab20
tab20b
tab20c

Miscellaneous colormaps

terrain
ocean
cubehelix
rainbow
twilight

Color names API

black
k
dimgray
dimgrey
gray
grey
darkgray
darkgrey
silver
lightgray
lightgrey
gainsboro
whitesmoke
w
white
snow
rosybrown
lightcoral
indianred
brown
firebrick
maroon
darkred
r
red
mistyrose
salmon
tomato
darksalmon
coral
orangered
lightsalmon
sienna
seashell
chocolate
saddlebrown
sandybrown
peachpuff
peru
linen
bisque
darkorange
burlywood
antiquewhite
tan
navajowhite
blanchedalmond
papayawhip
moccasin
orange
wheat
oldlace

floralwhite
darkgoldenrod
goldenrod
cornsilk
gold
lemonchiffon
khaki
palegoldenrod
darkkhaki
ivory
beige
lightyellow
lightgoldenrodyellow
olive
y
yellow
olivedrab
yellowgreen
darkolivegreen
greenyellow
chartreuse
lawngreen
honeydew
darkseagreen
palegreen
lightgreen
forestgreen
limegreen
darkgreen
g
green
lime
seagreen
mediumseagreen
springgreen
mintcream
mediumspringgreen
mediumaquamarine
aquamarine
turquoise
lightseagreen
mediumturquoise
azure
lightcyan
paleturquoise
darkslategray
darkslategrey
teal
darkcyan
c
aqua
cyan

darkturquoise
cadetblue
powderblue
lightblue
deepskyblue
skyblue
lightskyblue
steelblue
aliceblue
dodgerblue
lightslategray
lightslategrey
slategray
slategrey
lightsteelblue
cornflowerblue
royalblue
ghostwhite
lavender
midnightblue
navy
darkblue
mediumblue
b
blue
slateblue
darkslateblue
mediumslateblue
mediumpurple
rebeccapurple
blueviolet
indigo
darkorchid
darkviolet
mediumorchid
thistle
plum
violet
purple
darkmagenta
m
fuchsia
magenta
orchid
mediumvioletred
deeppink
hotpink
lavenderblush
palevioletred
crimson
pink
lightpink

Image interpolation API

None none nearest

bilinear bicubic spline16

spline36 hanning hamming

hermite kaiser quadric

catrom gaussian bessel

mitchell sinc lanczos

Legend placement

3 8 4

6 10 7

2 9 1A

B

C

D E F

G

H

I

JKL

ax.legend(loc=”string”, bbox_to_anchor=(x,y))
2: upper left 9: upper center 1: upper right
6: center left 10: center 7: center right
3: lower left 8: lower center 4: lower right

A: upper right / (-0.1,0.9) B: center right / (-0.1,0.5)
C: lower right / (-0.1,0.1) D: upper left / (0.1,-0.1)
E: upper center / (0.5,-0.1) F: upper right / (0.9,-0.1)
G: lower left / (1.1,0.1) H: center left / (1.1,0.5)
I: upper left / (1.1,0.9) J: lower right / (0.9,1.1)
K: lower center / (0.5,1.1) L: lower left / (0.1,1.1)

Annotation connection styles API

arc3,
rad=0

arc3,
rad=0.3

angle3,
angleA=0,
angleB=90

angle,
angleA=-90,
angleB=180,
rad=0

angle,
angleA=-90,
angleB=180,
rad=25

arc,
angleA=-90,
angleB=0,
armA=0,
armB=40,
rad=0

bar,
fraction=0.3

bar,
fraction=-0.3

bar,
angle=180,
fraction=-0.2

Annotation arrow styles API

- <- ->

<-> <|- -|>

<|-|> ]- -[

]-[ |-| ]->

<-[ simple fancy

How do I …
… resize a figure?

→ fig.set_size_inches(w, h)
… save a figure?

→ fig.savefig(”figure.pdf”)
… save a transparent figure?

→ fig.savefig(”figure.pdf”, transparent=True)
… clear a figure/an axes?

→ fig.clear()→ ax.clear()
… close all figures?

→ plt.close(”all”)
… remove ticks?

→ ax.set_[xy]ticks([])
… remove tick labels ?

→ ax.set_[xy]ticklabels([])
… rotate tick labels ?

→ ax.set_[xy]ticks(rotation=90)
… hide top spine?

→ ax.spines[’top’].set_visible(False)
… hide legend border?

→ ax.legend(frameon=False)
… show error as shaded region?

→ ax.fill_between(X, Y+error, Y‐error)
… draw a rectangle?

→ ax.add_patch(plt.Rectangle((0, 0), 1, 1)
… draw a vertical line?

→ ax.axvline(x=0.5)
… draw outside frame?

→ ax.plot(…, clip_on=False)
… use transparency?

→ ax.plot(…, alpha=0.25)
… convert an RGB image into a gray image?

→ gray = 0.2989*R + 0.5870*G + 0.1140*B
… set figure background color?

→ fig.patch.set_facecolor(“grey”)
… get a reversed colormap?

→ plt.get_cmap(“viridis_r”)
… get a discrete colormap?

→ plt.get_cmap(“viridis”, 10)
… show a figure for one second?

→ fig.show(block=False), time.sleep(1)

Performance tips

scatter(X, Y) slow
plot(X, Y, marker=”o”, ls=””) fast
for i in range(n): plot(X[i]) slow
plot(sum([x+[None] for x in X],[])) fast
cla(), imshow(…), canvas.draw() slow
im.set_data(…), canvas.draw() fast

Beyond Matplotlib

Seaborn: Statistical Data Visualization
Cartopy: Geospatial Data Processing
yt: Volumetric data Visualization
mpld3: Bringing Matplotlib to the browser
Datashader: Large data processing pipeline
plotnine: A Grammar of Graphics for Python

Matplotlib Cheatsheets
Copyright (c) 2021 Matplotlib Development Team
Released under a CC‐BY 4.0 International License
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https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots_adjust.html
https://matplotlib.org/tutorials/intermediate/imshow_extent.html
https://matplotlib.org/tutorials/text/text_props.html
https://matplotlib.org/tutorials/text/text_props.html
https://matplotlib.org/stable/api/colors_api.html
https://matplotlib.org/gallery/images_contours_and_fields/interpolation_methods.html
https://matplotlib.org/tutorials/text/annotations.html
https://matplotlib.org/tutorials/text/annotations.html
https://seaborn.pydata.org/
https://scitools.org.uk/cartopy/docs/latest/
https://yt-project.org/doc/index.html
https://mpld3.github.io
https://datashader.org/
https://plotnine.readthedocs.io/en/latest/
https://github.com/matplotlib/cheatsheets


Matplotlib for beginners
Matplotlib is a library for making 2D plots in Python. It is
designed with the philosophy that you should be able to
create simple plots with just a few commands:

1 Initialize

import numpy as np
import matplotlib.pyplot as plt

2 Prepare

X = np.linspace(0, 4*np.pi, 1000)
Y = np.sin(X)

3 Render

fig, ax = plt.subplots()
ax.plot(X, Y)
fig.show()

4 Observe

0 5 10 15 20 25 30
1.0

0.5

0.0

0.5

1.0

Choose

Matplotlib offers several kind of plots (see Gallery):

X = np.random.uniform(0, 1, 100)
Y = np.random.uniform(0, 1, 100)
ax.scatter(X, Y)

1234567
123
456
7

X = np.arange(10)
Y = np.random.uniform(1, 10, 10)
ax.bar(X, Y)

1234567
123
456
7

Z = np.random.uniform(0, 1, (8,8))

ax.imshow(Z)

1234567
123
456
7

Z = np.random.uniform(0, 1, (8,8))

ax.contourf(Z)

1234567
123
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7

Z = np.random.uniform(0, 1, 4)

ax.pie(Z)

1234567
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7

Z = np.random.normal(0, 1, 100)

ax.hist(Z)

1234567111213141516171

X = np.arange(5)
Y = np.random.uniform(0, 1, 5)
ax.errorbar(X, Y, Y∕4)

1234567
123
456
7

Z = np.random.normal(0, 1, (100,3))

ax.boxplot(Z)

246
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456
7

Tweak

You canmodify prettymuch anything in a plot, including lim-
its, colors, markers, line width and styles, ticks and ticks la-
bels, titles, etc.

X = np.linspace(0, 10, 100)
Y = np.sin(X)
ax.plot(X, Y, color=”black”)

1234567
123
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7

X = np.linspace(0, 10, 100)
Y = np.sin(X)
ax.plot(X, Y, linestyle=”--”)

1234567
123
456
7

X = np.linspace(0, 10, 100)
Y = np.sin(X)
ax.plot(X, Y, linewidth=5)

1234567
123
456
7

X = np.linspace(0, 10, 100)
Y = np.sin(X)
ax.plot(X, Y, marker=”o”)

1234567
123
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7

Organize

You can plot several data on the the same figure, but you
can also split a figure in several subplots (named Axes):

X = np.linspace(0, 10, 100)
Y1, Y2 = np.sin(X), np.cos(X)
ax.plot(X, Y1, X, Y2)

1234567
123
456
7

fig, (ax1, ax2) = plt.subplots((2,1))
ax1.plot(X, Y1, color=”C1”)
ax2.plot(X, Y2, color=”C0”)

fig, (ax1, ax2) = plt.subplots((1,2))
ax1.plot(Y1, X, color=”C1”)
ax2.plot(Y2, X, color=”C0”)

Label (everything)

ax.plot(X, Y)
fig.suptitle(None)
ax.set_title(”A Sine wave”)

1234567
123
45

A Sine wave

ax.plot(X, Y)
ax.set_ylabel(None)
ax.set_xlabel(”Time”)

Time

Explore

Figures are shown with a graphical user interface that al-
lows to zoom and pan the figure, to navigate between the
different views and to show the value under the mouse.

Save (bitmap or vector format)

fig.savefig(”my-first-figure.png”, dpi=300)
fig.savefig(”my-first-figure.pdf”)

Matplotlib 3.5.0 handout for beginners. Copyright (c) 2021 Matplotlib Development
Team. Released under a CC-BY 4.0 International License. Supported by NumFOCUS.



Matplotlib for intermediate users
A matplotlib figure is composed of a hierarchy of elements
that forms the actual figure. Each element can be modified.

0 1 2 3 40.25 0.50 0.75 1.25 1.50 1.75 2.25 2.50 2.75 3.25 3.50 3.75
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Minor tick label

Major tick

Minor tick

Major tick label

X axis label

Y axis label

Title

Line
(line plot)

Line
(line plot)

Markers
(scatter plot)

Grid

Legend

Axes
Figure

Spines

Anatomy of a figure
Blue signal
Red signal

Figure, axes & spines

fig, axs = plt.subplots((3,3))
axs[0,0].set_facecolor(”#ddddff”)
axs[2,2].set_facecolor(”#ffffdd”)

gs = fig.add_gridspec(3, 3)
ax = fig.add_subplot(gs[0, :])
ax.set_facecolor(”#ddddff”)

fig, ax = plt.subplots()
ax.spines[”top”].set_color(”None”)
ax.spines[”right”].set_color(”None”)

Ticks & labels

from mpl.ticker import MultipleLocator as ML
from mpl.ticker import ScalarFormatter as SF
ax.xaxis.set_minor_locator(ML(0.2))
ax.xaxis.set_minor_formatter(SF())
ax.tick_params(axis=’x’,which=’minor’,rotation=90)
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Lines & markers

X = np.linspace(0.1, 10*np.pi, 1000)
Y = np.sin(X)
ax.plot(X, Y, ”C1o:”, markevery=25, mec=”1.0”)

0 5 10 15 20 25 30

1

0

1

Scales & projections

fig, ax = plt.subplots()
ax.set_xscale(”log”)
ax.plot(X, Y, ”C1o-”, markevery=25, mec=”1.0”)

10 1 100 101

1

0

1

Text & ornaments

ax.fill_betweenx([-1,1],[0],[2*np.pi])
ax.text(0, -1, r” Period $\Phi$”)

0 5 10 15 20 25 30

1

0

1

 Period 

Legend

ax.plot(X, np.sin(X), ”C0”, label=”Sine”)
ax.plot(X, np.cos(X), ”C1”, label=”Cosine”)
ax.legend(bbox_to_anchor=(0,1,1,.1),ncol=2,

mode=”expand”, loc=”lower left”)

Sine and CosineSine Cosine

Annotation

ax.annotate(”A”, (X[250],Y[250]),(X[250],-1),
ha=”center”, va=”center”,arrowprops =
{”arrowstyle” : ”->”, ”color”: ”C1”})
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Colors

Any color can be used, but Matplotlib offers sets of colors:

0 2 4 6 8 10 12 14 16
0
1

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

0 2 4 6 8 10 12 14 16
0
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Size & DPI

Consider a square figure to be included in a two-columns A4
paper with 2cmmargins on each side and a column separa-
tion of 1cm. The width of a figure is (21 - 2*2 - 1)/2 = 8cm.
One inch being 2.54cm, figure size should be 3.15×3.15 in.

fig = plt.figure(figsize=(3.15,3.15), dpi=50)
plt.savefig(”figure.pdf”, dpi=600)

Matplotlib 3.5.0 handout for intermediate users. Copyright (c) 2021 Matplotlib De-
velopment Team. Released under a CC-BY 4.0 International License. Supported by
NumFOCUS.



Matplotlib tips & tricks
Transparency

Scatter plots can be enhanced by using transparency (al-
pha) in order to show areawith higher density. Multiple scat-
ter plots can be used to delineate a frontier.

X = np.random.normal(-1, 1, 500)
Y = np.random.normal(-1, 1, 500)
ax.scatter(X, Y, 50, ”0.0”, lw=2) # optional
ax.scatter(X, Y, 50, ”1.0”, lw=0) # optional
ax.scatter(X, Y, 40, ”C1”, lw=0, alpha=0.1)

Rasterization

If your figure has many graphical elements, such as a huge
scatter, you can rasterize them to save memory and keep
other elements in vector format.

X = np.random.normal(-1, 1, 10_000)
Y = np.random.normal(-1, 1, 10_000)
ax.scatter(X, Y, rasterized=True)
fig.savefig(”rasterized-figure.pdf”, dpi=600)

Offline rendering

Use the Agg backend to render a figure directly in an array.

from matplotlib.backends.backend_agg import FigureCanvas
canvas = FigureCanvas(Figure()))
... # draw som stuff
canvas.draw()
Z = np.array(canvas.renderer.buffer_rgba())

Range of continuous colors

You can use colormap to pick from a range of continuous
colors.

X = np.random.randn(1000, 4)
cmap = plt.get_cmap(”Oranges”)
colors = cmap([0.2, 0.4, 0.6, 0.8])

ax.hist(X, 2, histtype=’bar’, color=colors)

Text outline

Use text outline to make text more visible.

import matplotlib.patheffects as fx
text = ax.text(0.5, 0.1, ”Label”)
text.set_path_effects([
fx.Stroke(linewidth=3, foreground=’1.0’),
fx.Normal()])

Multiline plot

You can plot several lines at once using None as separator.

X,Y = [], []
for x in np.linspace(0, 10*np.pi, 100):
X.extend([x, x, None]), Y.extend([0, sin(x), None])

ax.plot(X, Y, ”black”)

Dotted lines

To have rounded dotted lines, use a custom linestyle and
modify dash_capstyle.

ax.plot([0,1], [0,0], ”C1”,
linestyle = (0, (0.01, 1)), dash_capstyle=”round”)

ax.plot([0,1], [1,1], ”C1”,
linestyle = (0, (0.01, 2)), dash_capstyle=”round”)

Combining axes

You can use overlaid axes with different projections.

ax1 = fig.add_axes([0,0,1,1],
label=”cartesian”)

ax2 = fig.add_axes([0,0,1,1],
label=”polar”,
projection=”polar”)

Colorbar adjustment

You can adjust a colorbar’s size when adding it.

im = ax.imshow(Z)

cb = plt.colorbar(im,
fraction=0.046, pad=0.04)

cb.set_ticks([])

Taking advantage of typography

You can use a condensed font such as Roboto Condensed
to save space on tick labels.

for tick in ax.get_xticklabels(which=’both’):
tick.set_fontname(”Roboto Condensed”)

0 1 2 3 4 50.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6 4.8

Getting rid of margins

Once your figure is finished, you can call tight_layout()
to remove white margins. If there are remaining margins,
you can use the pdfcrop utility (comes with TeX live).

Hatching

You can achieve a nice visual effect with thick hatch pat-
terns.

cmap = plt.get_cmap(”Oranges”)
plt.rcParams[’hatch.color’] = cmap(0.2)
plt.rcParams[’hatch.linewidth’] = 8
ax.bar(X, Y, color=cmap(0.6), hatch=”∕” )

2018 2019

38%

27%

53%
59%

Read the documentation

Matplotlib comes with an extensive documentation explain-
ing the details of each command and is generally accom-
panied by examples. Together with the huge online gallery,
this documentation is a gold-mine.

Matplotlib 3.5.0 handout for tips & tricks. Copyright (c) 2021 Matplotlib Development
Team. Released under a CC-BY 4.0 International License. Supported by NumFOCUS.
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Base R  
Cheat Sheet 

RStudio® is a trademark of RStudio, Inc.  •  CC BY Mhairi McNeill  •  mhairihmcneill@gmail.com  Learn more at web page or vignette  •  package  version  •  Updated: 3/15

Input Ouput Description 

df <- read.table(‘file.txt’) write.table(df, ‘file.txt’) Read and write a delimited text 
file.

df <- read.csv(‘file.csv’) write.csv(df, ‘file.csv’)

Read and write a comma 
separated value file. This is a 

special case of read.table/
write.table. 

load(‘file.RData’) save(df, file = ’file.Rdata’) Read and write an R data file, a 
file type special for R. 

?mean  
Get help of a particular function. 
help.search(‘weighted mean’) 
Search the help files for a word or phrase. 
help(package = ‘dplyr’) 
Find help for a package. 

Getting Help
Accessing the help files

More about an object

str(iris) 
Get a summary of an object’s structure.  
class(iris) 
Find the class an object belongs to.

Programming
For Loop

for (variable in sequence){ 

Do something 

}

Example
for (i in 1:4){ 

j <- i + 10 

print(j) 

}

While Loop

while (condition){ 

Do something 

}

Example
while (i < 5){ 

print(i) 

i <- i + 1 

}

If Statements

if (condition){ 
Do something 

} else { 
Do something different  

}

Example
if (i > 3){ 

print(‘Yes’) 
} else { 

print(‘No’)  
}

Functions
function_name <- function(var){ 

Do something 

return(new_variable) 
}

Example
square <- function(x){ 

squared <- x*x 

return(squared) 
}

a == b Are equal a > b Greater than a >= b Greater than 
or equal to is.na(a) Is missing

a != b Not equal a < b Less than a <= b Less than or 
equal to

is.null(a) Is null 
Conditions

Creating Vectors

c(2, 4, 6) 2 4 6 Join elements into 
a vector 

2:6 2 3 4 5 6 An integer 
sequence

seq(2, 3, by=0.5) 2.0 2.5 3.0 A complex 
sequence

rep(1:2, times=3) 1 2 1 2 1 2 Repeat a vector

rep(1:2, each=3) 1 1 1 2 2 2 Repeat elements 
of a vector 

install.packages(‘dplyr’) 
Download and install a package from CRAN. 

library(dplyr)  
Load the package into the session, making all 
its functions available to use.  

dplyr::select  
Use a particular function from a package. 

data(iris) 
Load a built-in dataset into the environment. 

Using Packages

Vectors

Selecting Vector Elements 

x[4] The fourth element.

x[-4] All but the fourth.

x[2:4] Elements two to four.

x[-(2:4)] All elements except 
two to four.

x[c(1, 5)] Elements one and 
five.

x[x == 10] Elements which 
are equal to 10.

x[x < 0] All elements less 
than zero.

x[x %in%  
c(1, 2, 5)]

Elements in the set 
1, 2, 5.

By Position

By Value

Named Vectors 

x[‘apple’] Element with 
name ‘apple’.

Reading and Writing Data

Working Directory
getwd() 
Find the current working directory (where 
inputs are found and outputs are sent). 

setwd(‘C://file/path’) 
Change the current working directory. 

Use projects in RStudio to set the working  
directory to the folder you are working in.  

Vector Functions
sort(x)  
Return x sorted.

rev(x)  
Return x reversed.

table(x)  
See counts of values.

unique(x)  
See unique values.

Also see the readr package.

https://creativecommons.org/licenses/by/4.0/
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Lists

Matrices

Data Frames

Maths Functions 

Types Strings 

Factors 

Statistics 

Distributions 

as.logical TRUE, FALSE, TRUE Boolean values (TRUE or FALSE).

as.numeric 1, 0, 1 Integers or floating point 
numbers.

as.character '1', '0', '1' Character strings. Generally 
preferred to factors.

as.factor
'1', '0', '1', 
levels: '1', '0'

Character strings with preset 
levels. Needed for some 

statistical models. 

Converting between common data types in R. Can always go 
from a higher value in the table to a lower value. 

> a <- 'apple' 
> a 
[1] 'apple'

The Environment

Variable Assignment

ls() List all variables in the 
environment.

rm(x) Remove x from the 
environment.

rm(list = ls()) Remove all variables from the 
environment.

You can use the environment panel in RStudio to 
browse variables in your environment. 

factor(x) 
Turn a vector into a factor. Can 
set the levels of the factor and 

the order.

m <- matrix(x, nrow = 3, ncol = 3) 
 Create a matrix from x.

wwwwww
m[2,  ] - Select a row

m[ , 1] - Select a  column

m[2, 3] -  Select an elementwwwwww
wwwwww

t(m) 
Transpose 
m %*% n 

Matrix Multiplication 
solve(m, n) 

Find x in: m * x = n

l <- list(x = 1:5, y = c('a', 'b')) 
 A list is a collection of elements which can be of different types. 

l[[2]] l[1] l$x l['y']

Second element 
of l.

New list with 
only the first 

element.

Element named 
x.

New list with 
only element 

named y.

df <- data.frame(x = 1:3, y = c('a', 'b', 'c')) 
A special case of a list where all elements are the same length.

t.test(x, y) 
Perform a t-test for 
difference between 

means. 

pairwise.t.test 
 Perform a t-test for 

 paired data.

log(x) Natural log. sum(x) Sum.

exp(x) Exponential. mean(x) Mean.

max(x) Largest element. median(x) Median. 

min(x) Smallest element. quantile(x) Percentage 
quantiles.

round(x, n) Round to n decimal 
places.

rank(x) Rank of elements.

signif(x, n) Round to n 
significant figures.

var(x) The variance.

cor(x, y) Correlation. sd(x) The standard 
deviation.

x y

1 a

2 b

3 c

Matrix subsetting

df[2, ]

df[ , 2]

df[2, 2]

List subsetting

df$x df[[2]]

cbind - Bind columns.

rbind - Bind rows.

View(df) See the full data 
frame.

head(df) See the first 6 
rows.

Understanding a data frame

nrow(df) 
Number of rows. 

ncol(df) 
Number of 
columns. 

dim(df) 
Number of 
columns and 
rows.

Plotting  

Dates See the lubridate package.

Also see the ggplot2 package.

Also see the stringr package.

Also see the 
dplyr package.

plot(x) 
Values of x in 

order.

plot(x, y) 
Values of x 
against y.

hist(x) 
Histogram of 

x.

Random 
Variates 

Density 
Function

Cumulative 
Distribution

Quantile

Normal rnorm dnorm pnorm qnorm

Poisson rpois dpois ppois qpois

Binomial rbinom dbinom pbinom qbinom

Uniform runif dunif punif qunif

lm(y ~ x, data=df) 
Linear model. 

glm(y ~ x, data=df) 
Generalised linear model. 

summary 
Get more detailed information 

 out a model.

prop.test 
Test for a 
difference 
between 

proportions. 

aov 
Analysis of 
variance. 

paste(x, y, sep = ' ') Join multiple vectors together.

paste(x, collapse = ' ') Join elements of a vector together.

grep(pattern, x) Find regular expression matches in x. 

gsub(pattern, replace, x) Replace matches in x with a string.

toupper(x) Convert to uppercase.

tolower(x) Convert to lowercase.

nchar(x) Number of characters in a string. 

cut(x, breaks = 4) 
Turn a numeric vector into a 

factor by ‘cutting’ into 
sections.  

https://creativecommons.org/licenses/by/4.0/
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Other types of data 
Try one of the following packages to import 
other types of files 

• haven - SPSS, Stata, and SAS files
• readxl - excel files (.xls and .xlsx)
• DBI - databases
• jsonlite - json
• xml2 - XML
• httr - Web APIs
• rvest - HTML (Web Scraping)

write_csv(x, path, na = "NA", append = FALSE, 
col_names = !append) 
Tibble/df to comma delimited file. 

write_delim(x, path, delim = " ", na = "NA", 
append = FALSE, col_names = !append) 
Tibble/df to file with any delimiter. 

write_excel_csv(x, path, na = "NA", append = 
FALSE, col_names = !append) 
Tibble/df to a CSV for excel 

write_file(x, path, append = FALSE) 
String to file. 

write_lines(x, path, na = "NA", append = 
FALSE) 
String vector to file, one element per line. 

write_rds(x, path, compress = c("none", "gz", 
"bz2", "xz"), ...) 
Object to RDS file. 

write_tsv(x, path, na = "NA", append = FALSE, 
col_names = !append) 
Tibble/df to tab delimited files.

Write functions
Save x, an R object, to path, a file path, with:

Read functions Parsing data typesTidy Data 
with tidyr Cheat Sheet 

R’s tidyverse is built around tidy data stored in  
tibbles, an enhanced version of a data frame.  

The front side of this sheet shows how 
to read text files into R with readr. 

The reverse side shows how to create 
tibbles with tibble and to layout tidy 
data with tidyr. 

Data Import 
with readr, tibble, and tidyr 

Cheat Sheet 

## Parsed with column specification: 
## cols( 
##   age = col_integer(), 
##   sex = col_character(), 
##   earn = col_double() 
## )

read_file(file, locale = default_locale()) 
Read a file into a single string. 

read_file_raw(file) 
Read a file into a raw vector. 

read_lines(file, skip = 0, n_max = -1L, locale = 
default_locale(), na = character(), progress = 
interactive()) 
Read each line into its own string.

Skip lines 
read_csv("file.csv",  
  skip = 1) 

Read in a subset 
read_csv("file.csv",  
  n_max = 1) 

Missing Values 
read_csv("file.csv",  
  na = c("4", "5", "."))

1. Use problems() to diagnose problems
x <- read_csv("file.csv"); problems(x)

2. Use a col_ function to guide parsing
• col_guess() - the default
• col_character()
• col_double()
• col_euro_double()
• col_datetime(format = "") Also

col_date(format = "") and col_time(format = "")
• col_factor(levels, ordered = FALSE)
• col_integer()
• col_logical()
• col_number()
• col_numeric()
• col_skip()
x <- read_csv("file.csv", col_types = cols(
    A = col_double(), 
    B = col_logical(), 
    C = col_factor() 
)) 

3. Else, read in as character vectors then parse
with a parse_ function.

• parse_guess(x, na = c("", "NA"), locale =
default_locale()) 

• parse_character(x, na = c("", "NA"), locale =
default_locale())

• parse_datetime(x, format = "", na = c("", "NA"),
locale = default_locale()) Also parse_date()
and parse_time() 

• parse_double(x, na = c("", "NA"), locale =
default_locale())

• parse_factor(x, levels, ordered = FALSE, na =
c("", "NA"), locale = default_locale())

• parse_integer(x, na = c("", "NA"), locale =
default_locale())

• parse_logical(x, na = c("", "NA"), locale =
default_locale())

• parse_number(x, na = c("", "NA"), locale =
default_locale())

x$A <- parse_number(x$A)

read_lines_raw(file, skip = 0, n_max = -1L, 
progress = interactive()) 
Read each line into a raw vector. 

read_log(file, col_names = FALSE, col_types = 
NULL, skip = 0, n_max = -1, progress = 
interactive()) 
Apache style log files.

Read non-tabular data

Read tabular data to tibbles

read_csv() 
Reads comma delimited files. 
read_csv("file.csv") 

read_csv2() 
Reads Semi-colon delimited files. 

read_csv2("file2.csv") 

read_delim(delim, quote = "\"", escape_backslash = FALSE, 
escape_double = TRUE) Reads files with any delimiter. 
read_delim("file.txt", delim = "|") 

read_fwf(col_positions) 
Reads fixed width files.  
read_fwf("file.fwf", col_positions = c(1, 3, 5)) 

read_tsv() 
Reads tab delimited files. Also read_table(). 
read_tsv("file.tsv") 

a,b,c 
1,2,3 
4,5,NA

a;b;c 
1;2;3 
4;5;NA

a|b|c 
1|2|3 
4|5|NA

a  b  c 
1  2  3 
4  5  NA

These functions share the common arguments: 
read_*(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), 

quoted_na = TRUE, comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = 
min(1000, n_max), progress = interactive())

A B C
1 2 3

A B C
1 2 3
4 5 NA

x y z
A B C
1 2 3
4 5 NA

A B C
1 2 3
NA NA NA

1 2 3

4 5 NA

A B C
1 2 3
4 5 NA

A B C
1 2 3
4 5 NA

A B C
1 2 3
4 5 NA

A B C
1 2 3
4 5 NA

Useful arguments

a,b,c 
1,2,3 
4,5,NA

Example file 
write_csv (path = "file.csv", 
  x = read_csv("a,b,c\n1,2,3\n4,5,NA")) 

No header 
read_csv("file.csv",  
  col_names = FALSE) 

Provide header 
read_csv("file.csv", 
   col_names = c("x", "y", "z"))

readr functions guess the types of each column 
and convert types when appropriate (but will 
NOT convert strings to factors automatically).  

A message shows the type of each column in 
the result.

earn is a double (numeric)
sex is a 

character

age is an 
integer

RStudio® is a trademark of RStudio, Inc.  •  CC BY  RStudio info@rstudio.com  •  844-448-1212 • rstudio.com Learn more at browseVignettes(package = c("readr", "tibble", "tidyr"))  •  readr 1.1.0 •  tibble 1.2.12 •  tidyr  0.6.0  •  Updated: 2017-01
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gather(data, key, value, ..., na.rm = FALSE,  
convert = FALSE, factor_key = FALSE) 
Gather moves column names into a key 
column, gathering the column values into a 
single value column.

spread(data, key, value, fill = NA, convert = FALSE,  
drop = TRUE, sep = NULL) 
Spread moves the unique values of a key column 
into the column names, spreading the values of a 
value column across the new columns that result.

Use gather() and spread() to reorganize the values of a table into a new layout. Each uses the idea of a 
key column: value column pair.

gather(table4a, `1999`, `2000`,  
key = "year", value = "cases") spread(table2, type, count)

valuekey

country 1999 2000
A 0.7K 2K
B 37K 80K
C 212K 213K

table4a
country year cases

A 1999 0.7K
B 1999 37K
C 1999 212K
A 2000 2K
B 2000 80K
C 2000 213K

valuekey

country year cases pop
A 1999 0.7K 19M
A 2000 2K 20M
B 1999 37K 172M
B 2000 80K 174M
C 1999 212K 1T
C 2000 213K 1T

table2
country year type count

A 1999 cases 0.7K
A 1999 pop 19M
A 2000 cases 2K
A 2000 pop 20M
B 1999 cases 37K
B 1999 pop 172M
B 2000 cases 80K
B 2000 pop 174M
C 1999 cases 212K
C 1999 pop 1T
C 2000 cases 213K
C 2000 pop 1T

Split and Combine Cells

unite(data, col, ..., sep = "_", remove = TRUE) 

Collapse cells across several columns to 
make a single column.

drop_na(data, ...) 
Drop rows containing 
NA’s in … columns.

fill(data, ..., .direction = c("down", "up")) 
Fill in NA’s in … columns with most 
recent non-NA values.

replace_na(data,  
replace = list(), ...) 
Replace NA’s by column.

Use these functions to split or combine cells into 
individual, isolated values.

country year rate
A 1999 0.7K/19M
A 2000 2K/20M
B 1999 37K/172M
B 2000 80K/174M
C 1999 212K/1T
C 2000 213K/1T

country year cases pop
A 1999 0.7K 19M
A 2000 2K 20M
B 1999 37K 172
B 2000 80K 174
C 1999 212K 1T
C 2000 213K 1T

table3

separate(data, col, into,  sep = "[^[:alnum:]]+", 
remove = TRUE, convert = FALSE,  
extra = "warn", fill = "warn", ...) 

Separate each cell in a column to make several 
columns.

separate_rows(data, ..., sep = "[^[:alnum:].]+", 
convert = FALSE) 

Separate each cell in a column to make several 
rows. Also separate_rows_().

country century year
Afghan 19 99
Afghan 20 0
Brazil 19 99
Brazil 20 0
China 19 99
China 20 0

country year
Afghan 1999
Afghan 2000
Brazil 1999
Brazil 2000
China 1999
China 2000

table5

separate_rows(table3, rate,  
into = c("cases", "pop"))

separate_rows(table3, rate)

unite(table5, century, year,  
col = "year", sep = "")

Tidy Data with tidyr

x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
D 3

x
x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
B 1
C 1
D 3
E 3

x
x1 x2
A 1
B NA
C NA
D 3
E NA

x1 x2
A 1
B 2
C 2
D 3
E 2

x

drop_na(x, x2) fill(x, x2) replace_na(x,list(x2 = 2), x2)

country year rate
A 1999 0.7K
A 1999 19M
A 2000 2K
A 2000 20M
B 1999 37K
B 1999 172M
B 2000 80K
B 2000 174M
C 1999 212K
C 1999 1T
C 2000 213K
C 2000 1T

table3
country year rate

A 1999 0.7K/19M
A 2000 2K/20M
B 1999 37K/172M
B 2000 80K/174M
C 1999 212K/1T
C 2000 213K/1T

• Control the default appearance with options: 
options(tibble.print_max = n, 

tibble.print_min = m, tibble.width = Inf) 

• View entire data set with View(x, title) or 
glimpse(x, width = NULL, …) 

• Revert to data frame with as.data.frame() 
(required for some older packages)

Tibbles - an enhanced data frame

Handle Missing Values

Reshape Data - change the layout of values in a table

Tidy data is a way to organize tabular data. It provides a consistent data structure across packages.

CBA
A * B -> C
*A B C

Each observation, or 
case,  is in its own row

A B C

Each variable is in 
its own column

A B C

&

Learn more at browseVignettes(package = c("readr", "tibble", "tidyr"))  •  readr 1.1.0 •  tibble 1.2.12 •  tidyr  0.6.0  •  Updated: 2017-01

The tibble package provides a new S3 class for 
storing tabular data, the tibble. Tibbles inherit the 
data frame class, but improve two behaviors: 

• Display -  When you print a tibble, R provides a 
concise view of the data that fits on one screen. 

• Subsetting - [ always returns a new tibble, 
[[ and $ always return a vector. 

• No partial matching - You must use full 
column names when subsetting

as_tibble(x, …) Convert data frame to tibble.  

enframe(x, name = "name", value = "value") 
Converts named vector to a tibble with a 
names column and a values column. 

is_tibble(x) Test whether x is a tibble.

data frame display

tibble display

Construct a tibble in two ways
tibble(…)  

Construct by columns. 
tibble(x = 1:3,  
              y = c("a", "b", "c")) 

tribble(…)  
Construct by rows. 
tribble( 
   ~x,  ~y, 
     1,    "a", 
     2,    "b", 
     3,    "c")

A tibble: 3 × 2 
      x     y 
  <int> <dbl> 
1     1     a 
2     2     b 
3     3     c

Both make 
this tibble

ww

# A tibble: 234 × 6 
   manufacturer      model displ 
          <chr>      <chr> <dbl> 
1          audi         a4   1.8 
2          audi         a4   1.8 
3          audi         a4   2.0 
4          audi         a4   2.0 
5          audi         a4   2.8 
6          audi         a4   2.8 
7          audi         a4   3.1 
8          audi a4 quattro   1.8 
9          audi a4 quattro   1.8 
10         audi a4 quattro   2.0 
# ... with 224 more rows, and 3 
#   more variables: year <int>, 
#   cyl <int>, trans <chr>

156 1999   6   auto(l4) 
157 1999   6   auto(l4) 
158 2008   6   auto(l4) 
159 2008   8   auto(s4) 
160 1999   4 manual(m5) 
161 1999   4   auto(l4) 
162 2008   4 manual(m5) 
163 2008   4 manual(m5) 
164 2008   4   auto(l4) 
165 2008   4   auto(l4) 
166 1999   4   auto(l4) 
 [ reached getOption("max.print") 
-- omitted 68 rows ]A large table 

to display

RStudio® is a trademark of RStudio, Inc.  •  CC BY  RStudio info@rstudio.com  •  844-448-1212 • rstudio.com 

A table is tidy if: Tidy data:

Makes variables easy 
to access as vectors

Preserves cases during 
vectorized operations

Expand Tables - quickly create tables with  combinations of values

complete(data, ..., fill = list()) 
Adds to the data missing combinations of the 
values of the variables listed in …   
complete(mtcars, cyl, gear, carb)

expand(data, ...) 
Create new tibble with all possible combinations 
of the values of the variables listed in …   
expand(mtcars, cyl, gear, carb)

https://creativecommons.org/licenses/by/4.0/
http://rstudio.com


Data Wrangling
with dplyr and tidyr  

Cheat Sheet 

RStudio® is a trademark of RStudio, Inc.  •  CC BY RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com 

Syntax  - Helpful conventions for  wrangling

dplyr::tbl_df(iris) 
Converts data to tbl class. tbl’s are easier to examine than 
data frames. R displays only the data that fits onscreen:

dplyr::glimpse(iris) 
Information dense summary of tbl data. 

utils::View(iris) 
View data set in spreadsheet-like display (note capital V).

Source: local data frame [150 x 5] 

   Sepal.Length Sepal.Width Petal.Length 
1 5.1 3.5 1.4 
2 4.9 3.0 1.4 
3 4.7 3.2 1.3 
4 4.6 3.1 1.5 
5 5.0 3.6 1.4 
.. ... ... ... 
Variables not shown: Petal.Width (dbl), 
  Species (fctr)

dplyr::%>% 
Passes object on left hand side as first argument (or . 
argument) of function on righthand side. 

"Piping" with %>% makes code more readable, e.g. 
iris %>%  
  group_by(Species) %>% 
  summarise(avg = mean(Sepal.Width)) %>% 
  arrange(avg)

  x %>% f(y) is the same as   f(x, y) 
y %>% f(x, ., z) is the same as   f(x, y, z )

Reshaping Data  - Change the layout of a data set

Subset Observations (Rows) Subset Variables (Columns)

F M A

Each variable is saved 
in its own column

F M A

Each observation is 
saved in its own row

In a tidy 
data set: &

Tidy Data  - A foundation for wrangling in R

Tidy data complements R’s vectorized 
operations. R will automatically preserve 
observations as you manipulate variables. 
No other format works as intuitively with R.

FAM

M * A

*

tidyr::gather(cases, "year", "n", 2:4) 
Gather columns into rows.

tidyr::unite(data, col, ..., sep) 
Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6) 
Combine vectors into data frame 
(optimized). 

dplyr::arrange(mtcars, mpg) 
Order rows by values of a column 
(low to high). 

dplyr::arrange(mtcars, desc(mpg)) 
Order rows by values of a column 
(high to low). 

dplyr::rename(tb, y = year) 
Rename the columns of a data 
frame.

tidyr::spread(pollution, size, amount) 
Spread rows into columns.

tidyr::separate(storms, date, c("y", "m", "d")) 
Separate one column into several.

wwwwwwA1005A1013A1010A1010
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wppw11010071007110451009100945wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7) 

Extract rows that meet logical criteria. 
dplyr::distinct(iris) 

Remove duplicate rows. 
dplyr::sample_frac(iris, 0.5, replace = TRUE) 

Randomly select fraction of rows. 
dplyr::sample_n(iris, 10, replace = TRUE) 

Randomly select n rows. 
dplyr::slice(iris, 10:15) 

Select rows by position. 
dplyr::top_n(storms, 2, date) 

Select and order top n entries (by group if grouped data).

< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators

Logic in R  - ?Comparison, ?base::Logic

dplyr::select(iris, Sepal.Width, Petal.Length, Species) 
Select columns by name or helper function.

Helper functions for select - ?select
select(iris, contains(".")) 

Select columns whose name contains a character string. 
select(iris, ends_with("Length")) 

Select columns whose name ends with a character string. 
select(iris, everything()) 

Select every column. 
select(iris, matches(".t.")) 

Select columns whose name matches a regular expression. 
select(iris, num_range("x", 1:5)) 

Select columns named x1, x2, x3, x4, x5. 
select(iris, one_of(c("Species", "Genus"))) 

Select columns whose names are in a group of names. 
select(iris, starts_with("Sepal")) 

Select columns whose name starts with a character string. 
select(iris, Sepal.Length:Petal.Width) 

Select all columns between Sepal.Length and Petal.Width (inclusive). 
select(iris, -Species) 

Select all columns except Species. 
Learn more with browseVignettes(package = c("dplyr", "tidyr"))  •  dplyr  0.4.0•  tidyr  0.2.0  •  Updated: 1/15
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devtools::install_github("rstudio/EDAWR") for data sets

https://creativecommons.org/licenses/by/4.0/
mailto:info@rstudio.com
http://rstudio.com


dplyr::group_by(iris, Species) 
Group data into rows with the same value of Species. 

dplyr::ungroup(iris) 
Remove grouping information from data frame. 

iris   %>%   group_by(Species)   %>%   summarise(…) 
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir irC

dplyr::summarise(iris, avg = mean(Sepal.Length)) 
Summarise data into single row of values. 

dplyr::summarise_each(iris, funs(mean)) 
Apply summary function to each column. 

dplyr::count(iris, Species, wt = Sepal.Length) 
Count number of rows with each unique value of 
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width) 
Compute and append one or more new columns.  

dplyr::mutate_each(iris, funs(min_rank)) 
Apply window function to each column. 

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width) 
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that 
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of 
values and return another vector of values, such as:

window 
function

summary 
function

dplyr::first 
First value of a vector. 

dplyr::last 
Last value of a vector. 

dplyr::nth 
Nth value of a vector. 

dplyr::n 
# of values in a vector. 

dplyr::n_distinct 
# of distinct values in 
a vector. 

IQR 
IQR of a vector.

min 
Minimum value in a vector. 

max 
Maximum value in a vector. 

mean 
Mean value of a vector. 

median 
Median value of a vector. 

var 
Variance of a vector. 

sd 
Standard deviation of a 
vector.

dplyr::lead 
Copy with values shifted by 1. 

dplyr::lag 
Copy with values lagged by 1. 

dplyr::dense_rank 
Ranks with no gaps. 

dplyr::min_rank 
Ranks. Ties get min rank. 

dplyr::percent_rank 
Ranks rescaled to [0, 1]. 

dplyr::row_number 
Ranks. Ties got to first value. 

dplyr::ntile 
Bin vector into n buckets. 

dplyr::between 
Are values between a and b? 

dplyr::cume_dist 
Cumulative distribution.

dplyr::cumall 
Cumulative all 

dplyr::cumany 
Cumulative any 

dplyr::cummean 
Cumulative mean 

cumsum 
Cumulative sum 

cummax 
Cumulative max 

cummin 
Cumulative min 

cumprod 
Cumulative prod 

pmax 
Element-wise max 

pmin 
Element-wise min

iris   %>%   group_by(Species)   %>%   mutate(…) 
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1") 
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1") 
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1") 
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1") 
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1") 
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1") 
All rows in a that do not have a match in b.

dplyr::intersect(y, z) 
Rows that appear in both y and z.

dplyr::union(y, z) 
Rows that appear in either or both y and z.

dplyr::setdiff(y, z) 
Rows that appear in y but not z.

dplyr::bind_rows(y, z) 
Append z to y as new rows.

dplyr::bind_cols(y, z) 
Append z to y as new columns.  
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc.  •  CC BY RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr"))  •  dplyr  0.4.0•  tidyr  0.2.0  •  Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets
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R For Data Science Cheat Sheet
data.table

Learn R for data science Interactively at  www.DataCamp.com

data.table

DataCamp
Learn Python for Data Science Interactively

Creating A data.table

data.table is an R package that provides a high-performance 
version of base R’s data.frame with syntax and feature 
enhancements for ease of use, convenience and 
programming speed.

Load the package:
> library(data.table)

> set.seed(45L) Create a data.table
> DT <- data.table(V1=c(1L,2L), and call it DT

V2=LETTERS[1:3],
                   V3=round(rnorm(4),4),

V4=1:12)

Subsetting Rows Using i
> DT[3:5,] Select 3rd to 5th row
> DT[3:5] Select 3rd to 5th row
> DT[V2=="A"] Select all rows that have value A in column V2
> DT[V2 %in% c("A","C")] Select all rows that have value A or C in column V2

Manipulating on Columns in j
> DT[,V2] Return V2 as a vector
[1] “A” “B” “C” “A” “B” “C” ...

> DT[,.(V2,V3)] Return V2 and V3 as a data.table
> DT[,sum(V1)] Return the sum of all elements of V1 in a 
[1] 18 vector
> DT[,.(sum(V1),sd(V3))] Return the sum of all elements of V1 and the 
    V1 V2 std. dev. of V3 in a data.table
 1: 18 0.4546055

> DT[,.(Aggregate=sum(V1), The same as the above, with new names
Sd.V3=sd(V3))]  

    Aggregate     Sd.V3

 1: 18 0.4546055

> DT[,.(V1,Sd.V3=sd(V3))] Select column V2 and compute std. dev. of V3,
which returns a single value and gets recycled

> DT[,.(print(V2), Print column V2 and plot V3
plot(V3), 
NULL)]

Doing j  by Group
> DT[,.(V4.Sum=sum(V4)),by=V1] Calculate sum of V4 for every group in V1

V1 V4.Sum
 1:  1     36

 2:  2     42

> DT[,.(V4.Sum=sum(V4)), Calculate sum of V4 for every group in V1
by=.(V1,V2)] and V2

> DT[,.(V4.Sum=sum(V4)), Calculate sum of V4 for every group in 
by=sign(V1-1)] sign(V1-1)

   sign V4.Sum
1:    0     36

2:    1     42

> DT[,.(V4.Sum=sum(V4)), The same as the above, with new name
by=.(V1.01=sign(V1-1))] for the variable you’re grouping by    

> DT[1:5,.(V4.Sum=sum(V4)), Calculate sum of V4 for every group in V1
by=V1] after subsetting on the first 5 rows

> DT[,.N,by=V1] Count number of rows for every group in 
V1

Adding/Updating Columns By Reference in  j Using :=
> DT[,V1:=round(exp(V1),2)] V1 is updated by what is after :=
> DT                                       Return the result by calling DT

V1 V2      V3 V4
  1: 2.72  A -0.1107  1

2: 7.39  B -0.1427  2

3: 2.72  C -1.8893  3

4: 7.39  A -0.3571  4

...

> DT[,c("V1","V2"):=list(round(exp(V1),2), Columns V1 and V2 are updated by 
LETTERS[4:6])]    what is after :=

> DT[,':='(V1=round(exp(V1),2), Alternative to the above one. With [], 
V2=LETTERS[4:6])][] you print the result to the screen

V1 V2      V3 V4
  1:   15.18  D -0.1107  1

  2: 1619.71  E -0.1427  2

  3:   15.18  F -1.8893  3

  4: 1619.71  D -0.3571  4

> DT[,V1:=NULL] Remove V1
> DT[,c("V1","V2"):=NULL] Remove columns V1 and V2
> Cols.chosen=c("A","B")
> DT[,Cols.Chosen:=NULL] Delete the column with column name

Cols.chosen
> DT[,(Cols.Chosen):=NULL] Delete the columns specified in the 

variable Cols.chosen

Indexing And Keys
> setkey(DT,V2) A key is set on V2; output is returned invisibly
> DT["A"]                    Return all rows where the key column (set to V2) has 

V1 V2      V3 V4 the value A
1:  1  A -0.2392  1
2:  2  A -1.6148  4

  3:  1  A  1.0498  7
  4:  2  A  0.3262 10

> DT[c("A","C")] Return all rows where the key column (V2) has value A or C 
> DT["A",mult="first"] Return first row of all rows that match value A in key 

column V2
> DT["A",mult="last"] Return last row of all rows that match value A in key 

column V2
> DT[c("A","D")] Return all rows where key column V2 has value A or D

V1 V2      V3 V4
  1:  1  A -0.2392  1
2:  2  A -1.6148  4

  3:  1  A  1.0498  7
  4:  2  A  0.3262 10
  5: NA  D      NA NA 

> DT[c("A","D"),nomatch=0] Return all rows where key column V2 has value A or D
V1 V2      V3 V4

1:  1  A -0.2392  1
2:  2  A -1.6148  4

  3:  1  A  1.0498  7
  4:  2  A  0.3262 10

> DT[c("A","C"),sum(V4)] Return total sum of V4, for rows of key column V2 that  
have values A or C

> DT[c("A","C"), Return sum of column V4 for rows of V2 that have value A,
     sum(V4), and anohter sum for rows of V2 that have value C
     by=.EACHI]
     V2 V1
  1:  A 22
  2:  C 30

> setkey(DT,V1,V2) Sort by V1 and then by V2 within each group of V1 (invisible)
> DT[.(2,"C")] Select rows that have value 2 for the first key (V1) and the 

V1 V2      V3 V4 value C for the second key (V2)
  1:  2  C  0.3262  6
  2:  2  C -1.6148 12

> DT[.(2,c("A","C"))] Select rows that have value 2 for the first key (V1) and within 
           V1 V2      V3 V4 those rows the value A or C for the second key (V2)
  1:  2  A -1.6148  4
  2:  2  A  0.3262 10

  3:  2  C  0.3262  6
  4:  2  C -1.6148 12

Advanced Data Table Operations 

Chaining

set()-Family

General form: DT[i, j, by]
“Take DT, subset rows using i, then calculate j grouped by by” > DT[.N-1] Return the penultimate row of the DT

> DT[,.N] Return the number of rows
> DT[,.(V2,V3)] Return V2 and V3 as a data.table
> DT[,list(V2,V3)] Return V2 and V3 as a data.table
> DT[,mean(V3),by=.(V1,V2)] Return the result of j, grouped by all possible

V1 V2      V1 combinations of groups specified in by
  1:  1  A  0.4053
  2:  1  B  0.4053
  3:  1  C  0.4053
  4:  2  A -0.6443
  5:  2  B -0.6443
  6:  2  C -0.6443

.SD & .SDcols
> DT[,print(.SD),by=V2] Look at what .SD contains
> DT[,.SD[c(1,.N)],by=V2] Select the first and last row grouped by V2
> DT[,lapply(.SD,sum),by=V2] Calculate sum of columns in .SD grouped by 

V2
> DT[,lapply(.SD,sum),by=V2, Calculate sum of V3 and V4 in .SD grouped by
      .SDcols=c("V3","V4")]   V2
    V2     V3 V4
  1:  A -0.478 22
  2:  B -0.478 26
  3:  C -0.478 30

> DT[,lapply(.SD,sum),by=V2, Calculate sum of V3 and V4 in .SD grouped by
      .SDcols=paste0("V",3:4)] V2

> DT <- DT[,.(V4.Sum=sum(V4)), Calculate sum of V4, grouped by V1
            by=V1]      

V1 V4.Sum
  1:  1     36
  2:  2     42

> DT[V4.Sum>40] Select that group of which the sum is >40
> DT[,.(V4.Sum=sum(V4)), Select that group of which the sum is >40

by=V1][V4.Sum>40]       (chaining)
     V1 V4.Sum
  1:  2     42

> DT[,.(V4.Sum=sum(V4)), Calculate sum of V4, grouped by V1, 
by=V1][order(-V1)]      ordered on V1

     V1 V4.Sum
  1:  2     42
  2:  1     36

Syntax: for (i in from:to) set(DT, row, column, new value)
> rows <- list(3:4,5:6)
> cols <- 1:2
> for(i in seq_along(rows)) Sequence along the values of rows, and
     {set(DT, for the values of cols, set the values of 

i=rows[[i]], those elements equal to NA (invisible)
          j=cols[i], 
          value=NA)}

Syntax: setnames(DT,"old","new")[]
> setnames(DT,"V2","Rating") Set name of V2 to Rating (invisible)
> setnames(DT, Change 2 column names (invisible)

c("V2","V3"),
c("V2.rating","V3.DC"))

set()

setnames()

setnames()

> setcolorder(DT, Change column ordering to contents
c("V2","V1","V4","V3")) of the specified vector (invisible)

Syntax: setcolorder(DT,"neworder")
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Data Transformation with data.table : : CHEAT SHEET

Manipulate columns with j

Functions for data.tables

data.table is an extremely fast and memory efficient package 
for transforming data in R. It works by converting R’s native 
data frame objects into data.tables with new and enhanced 
functionality. The basics of working with data.tables are:

dt[i, j, by]

Take data.table dt,
subset rows using i

and manipulate columns with j, 
grouped according to by.

data.tables are also data frames – functions that work with data 
frames therefore also work with data.tables.

data.table(a = c(1, 2), b = c("a", "b")) – create a data.table from 
scratch. Analogous to data.frame().

setDT(df)* or as.data.table(df) – convert a data frame or a list to 
a data.table.

Create a data.table

dt[1:2, ] – subset rows based on row numbers.

dt[a > 5, ] – subset rows based on values in 
one or more columns.

Subset rows using i

LOGICAL OPERATORS TO USE IN i

< <= is.na() %in% | %like%
> >= !is.na() ! & %between%

dt[, c(2)] – extract columns by number. Prefix 
column numbers with “-” to drop.

dt[, .(b, c)] – extract columns by name.b cb c

a
6

a
2
6
5

EXTRACT

dt[, .(x = sum(a))] – create a data.table with new 
columns based on the summarized values of rows.

Summary functions like mean(), median(), min(), 
max(), etc. can be used to summarize rows.

dt[, .(c = sum(b)), by = a] – summarize rows within groups.

dt[, c := sum(b), by = a] – create a new column and compute rows 
within groups.

dt[, .SD[1], by = a] – extract first row of groups.

dt[, .SD[.N], by = a] – extract last row of groups.

COMMON GROUPED OPERATIONS

COMPUTE COLUMNS*

c
3
3

dt[, c := 1 + 2] – compute a column based on 
an expression.

setorder(dt, a, -b) – reorder a data.table 
according to specified columns. Prefix column 
names with “-” for descending order.

a b
1 2
1 1
2 2

a b
1 2
2 2
1 1

REORDER

a
2
1

dt[a == 1, c := 1 + 2] – compute a column 
based on an expression but only for a subset 
of rows.

xa

SUMMARIZE

a c
2 NA
1 3

Group according to by
aa a dt[, j, by = .(a)] – group rows by 

values in specified columns.

dt[, j, keyby = .(a)] – group and 
simultaneously sort rows by values 
in specified columns.

Chaining
dt[…][…] – perform a sequence of data.table operations by 
chaining multiple “[]”. 

* SET FUNCTIONS AND :=
data.table’s functions prefixed with “set” and the operator “:=” 
work without “<-” to alter data without making copies in 
memory. E.g., the more efficient “setDT(df)” is analogous to
“df <- as.data.table(df)”.

c d
1 2
1 2

dt[, `:=`(c = 1 , d = 2)] – compute multiple 
columns based on separate expressions.

DELETE COLUMN

c dt[, c := NULL] – delete a column.

CONVERT COLUMN TYPE

b
1.5
2.6

b
1
2

dt[, b := as.integer(b)] – convert the type of a 
column using as.integer(), as.numeric(), 
as.character(), as.Date(), etc..

https://creativecommons.org/licenses/by-sa/4.0/
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BIND Apply function to cols.

Combine data.tables

dt_a[dt_b, on = .(b = y)] – join 
data.tables on rows with equal values.

a b
1 c
2 a
3 b

JOIN

ROLLING JOIN

x y
3 b
2 c
1 a

+
a b x
3 b 3
1 c 2
2 a 1

=

dt_a[dt_b, on = .(b = y, c > z)] –
join data.tables on rows with 
equal and unequal values.

a b c
1 c 7
2 a 5
3 b 6

x y z
3 b 4
2 c 5
1 a 8

+
a b c x
3 b 4 3
1 c 5 2
NA a 8 1

=

dt_a[dt_b, on = .(id = id, date = date), roll = TRUE] – join 
data.tables on matching rows in id columns but only keep the most 
recent preceding match with the left data.table according to date 
columns. “roll = -Inf” reverses direction.

rbind(dt_a, dt_b) – combine rows of two 
data.tables.

a b a b
+

a b
=

cbind(dt_a, dt_b) – combine columns 
of two data.tables.

a b x y

+
a b x y

=

a id date
1 A 01-01-2010
2 A 01-01-2012
3 A 01-01-2014
1 B 01-01-2010
2 B 01-01-2012

+ =
b id date
1 A 01-01-2013
1 B 01-01-2013

a id date b
2 A 01-01-2013 1
2 B 01-01-2013 1

setkey(dt, a,  b) – set keys to enable fast repeated lookup in 
specified columns using “dt[.(value), ]” or for merging without 
specifying merging columns using “dt_a[dt_b]”.

SET KEYS

Reshape a data.table
RESHAPE TO WIDE FORMAT

RESHAPE TO LONG FORMAT

dcast(dt, 
id ~ y,
value.var = c("a", "b"))

id y a b
A x 1 3
A z 2 4
B x 1 3
B z 2 4

APPLY A FUNCTION TO MULTIPLE COLUMNS

setnames(dt, c("a", "b"), c("x", "y")) – rename 
columns.

x ya b

RENAME COLUMNS

id a_x a_z b_x b_z
A 1 2 3 4
B 1 2 3 4

melt(dt, 
id.vars = c("id"), 
measure.vars = patterns("^a", "^b"), 
variable.name = "y",
value.name = c("a", "b"))

Reshape a data.table from long to wide format. 

id y a b
A 1 1 3
B 1 1 3
A 2 2 4
B 2 2 4

id a_x a_z b_x b_z
A 1 2 3 4
B 1 2 3 4

Reshape a data.table from wide to long format.

Sequential rows

dt A data.table.
id ~ y Formula with a LHS: ID columns containing IDs for 

multiple entries. And a RHS: columns with values to 
spread in column headers. 

value.var Columns containing values to fill into cells.

dt A data.table.
id.vars ID columns with IDs for multiple entries.
measure.vars Columns containing values to fill into cells (often in 

pattern form).
variable.name, 
value.name

Names of new columns for variables and values 
derived from old headers.

unique(dt, by = c("a", "b")) – extract unique 
rows based on columns specified in “by”. 
Leave out “by” to use all columns.

a b
1 2
2 2

a b
1 2
2 2
1 2

UNIQUE ROWS

uniqueN(dt, by = c("a", "b")) – count the number of unique rows 
based on columns specified in “by”. 

read & write files
IMPORT
fread("file.csv") – read data from a flat file such as .csv or .tsv into R. 

fread("file.csv", select = c("a", "b")) – read specified columns from a 
flat file into R.

EXPORT

fwrite(dt, "file.csv") – write data to a flat file from R. 

dt[, c := 1:.N, by = b] – within groups, compute a 
column with sequential row IDs.

a b c
1 a 1
2 a 2
3 b 1

a b
1 a
2 a
3 b

ROW IDS

dt[, c := shift(a, 1), by = b] – within groups, 
duplicate a column with rows lagged by 
specified amount.

dt[, c := shift(a, 1, type = "lead"), by = b] –
within groups, duplicate a column with rows 
leading by specified amount.

a b c
1 a NA
2 a 1
3 b NA
4 b 3
5 b 4

a b
1 a
2 a
3 b
4 b
5 b

LAG & LEAD

dt[, lapply(.SD, mean), .SDcols = c("a", "b")] –
apply a function – e.g. mean(), as.character(), 
which.max() – to columns specified in .SDcols
with lapply() and the .SD symbol. Also works 
with groups.

cols <- c("a")
dt[, paste0(cols, "_m") := lapply(.SD, mean), 
.SDcols = cols] – apply a function to specified 
columns and assign the result with suffixed 
variable names to the original data.

a b
2 5

a b
1 4
2 5
3 6

a a_m
1 2
2 2
3 2

a
1
2
3
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Introduction

Setup

createDummyFeatures(obj=,target=,method=,cols=)

target cols

normalizeFeatures(obj=,target=,method=,cols=,
range=,on.constant=)

method
• "center"
• "scale"
• "standardize"
• "range" range=c(0,1)

mergeSmallFactorLevels(task=,cols=,min.perc=)

summarizeColumns(obj=) obj

capLargeValues dropFeatures

removeConstantFeatures summarizeLevels

makeClassifTask(data=,target=)

positive

makeRegrTask(data=,target=)

makeMultilabelTask(data=,target=)

makeClusterTask(data=)

makeSurvTask(data=,target=
c("time","event"))

makeCostSensTask(data=,costs=)

task
• weights=
• blocking=

makeLearner(cl=,predict.type=,...,par.vals=)

• cl= "classif.xgboost" 
"regr.randomForest""cluster.kmeans"

• predict.type="response"
"prob"

"se"

"prob" "se"
• par.vals=

...
makeLearners()

• View(listLearners())
• View(listLearners(task))
• View(listLearners("classif",

properties=c("prob", "factors")))
"classif"

"prob" "factors"
• getLearnerProperties()

Refining Performance

makeParamSet(make<type>Param())
• makeNumericParam(id=,lower=,upper=,trafo=)
• makeIntegerParam(id=,lower=,upper=,trafo=)
• makeIntegerVectorParam(id=,len=,lower=,upper=,

trafo=)
• makeDiscreteParam(id=,values=c(...))

trafo
lower=-2,upper=2,trafo=function(x) 10^x

Logical 
LogicalVector CharacterVector DiscreteVector

makeTuneControl<type>()
• Grid(resolution=10L)
• Random(maxit=100)
• MBO(budget=)
• Irace(n.instances=)
• CMAES Design GenSA

tuneParams(learner=,task=,resampling=,
measures=,par.set=,control=)

library(mlbench)
data(Soybean)
soy = createDummyFeatures(Soybean,target="Class")
tsk = makeClassifTask(data=soy,target="Class")
ho = makeResampleInstance("Holdout",tsk)
tsk.train = subsetTask(tsk,ho$train.inds[[1]])
tsk.test = subsetTask(tsk,ho$test.inds[[1]])

lrn = makeLearner("classif.xgboost",nrounds=10)
cv = makeResampleDesc("CV",iters=5)
res = resample(lrn,tsk.train,cv,acc)

ps = makeParamSet(makeNumericParam("eta",0,1),
makeNumericParam("lambda",0,200),
makeIntegerParam("max_depth",1,20))

tc = makeTuneControlMBO(budget=100)
tr = tuneParams(lrn,tsk.train,cv5,acc,ps,tc)
lrn = setHyperPars(lrn,par.vals=tr$x)

eta lambda max_depth

mdl = train(lrn,tsk.train)
prd = predict(mdl,tsk.test)
calculateConfusionMatrix(prd)
mdl = train(lrn,tsk)

Quickstart

Training & Testing

setHyperPars(learner=,...)

makeLearner()

getParamSet(learner=)

"classif.qda"

train(learner=,task=)
WrappedModel

getLearnerModel()

predict(object=,task=,newdata=)

pred
View(pred)

as.data.frame(pred)

performance(pred=,measures=)

listMeasures()

• acc auc bac ber brier[.scaled] f1 fdr fn
fnr fp fpr gmean multiclass[.au1u .aunp .aunu
.brier] npv ppv qsr ssr tn tnr tp tpr wkappa

• arsq expvar kendalltau mae mape medae
medse mse msle rae rmse rmsle rrse rsq sae
spearmanrho sse

• db dunn G1 G2 silhouette

• multilabel[.f1 .subset01 .tpr .ppv
.acc .hamloss]

• mcp meancosts

• cindex
• featperc timeboth timepredict timetrain

• calculateConfusionMatrix(pred=)
• calculateROCMeasures(pred=)

makeResampleDesc(method=,...,stratify=)
method
• "CV" iters=
• "LOO" iters=
• "RepCV"

reps= folds=
• "Subsample"

iters= split=
• "Bootstrap" iters=
• "Holdout" split=
stratify

makeResampleInstance(desc=,task=)

resample(learner=,task=,resampling=,measures=)

cv2
cv3 cv5 cv10 hout

resample()
crossval() repcv() holdout() subsample()

bootstrapOOB() bootstrapB632() bootstrapB632plus()

0 10063

A CB

A B

A CB

function(required_parameters=,optional_parameters=)
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Visualization

generateThreshVsPerfData(obj=,measures=)

• plotThreshVsPerf(obj)

ThreshVsPerfData
• plotROCCurves(obj)

ThreshVsPerfData
measures=list(fpr,tpr)

• plotResiduals(obj=)
Prediction BenchmarkResult

generateLearningCurveData(learners=,task=,
resampling=,percs=,measures=)

• plotLearningCurve(obj=)

LearningCurveData

generateFilterValuesData(task=,method=)

• plotFilterValues(obj=)

FilterValuesData

generateHyperParsEffectData(tune.result=)

• plotHyperParsEffect(hyperpars.effec
t.data=,x=,y=,z=)

HyperParsEffectData

• plotOptPath(op=)
<obj>$opt.path <obj>

tuneResult featSelResult
• plotTuneMultiCritResult(res=)

generatePartialDependenceData(obj=,input=)
obj

input
• plotPartialDependence(obj=)

PartialDependenceData

• plotBMRBoxplots(bmr=)
• plotBMRSummary(bmr=)
• plotBMRRanksAsBarChart(bmr=)

• generateCritDifferencesData(bmr=,
measure=,p.value=,test=)

"bd" "Nemenyi"
• plotCritDifferences(obj=)

• generateCalibrationData(obj=)

• plotCalibration(obj=)

filterFeatures(task=,method=,
perc=,abs=,threshold=)

perc= abs=
threshold=

method
"randomForestSRC.rfsrc"

"anova.test" "carscore" "cforest.importance" 
"chi.squared" "gain.ratio" "information.gain" 
"kruskal.test" "linear.correlation" "mrmr" "oneR" 
"permutation.importance" "randomForest.importance"
"randomForestSRC.rfsrc" "randomForestSRC.var.select"
"rank.correlation" "relief" 
"symmetrical.uncertainty" "univariate.model.score" 
"variance"

selectFeatures(learner=,task=
resampling=,measures=,control=)

control

• makeFeatSelControlExhaustive(max.features=)
max.features

• makeFeatSelControlRandom(maxit=,prob=,
max.features=)

prob maxit

• makeFeatSelControlSequential(method=,maxit=,
max.features=,alpha=,beta=)

method "sfs"
"sbs" "sffs"
"sfbs" alpha

beta

• makeFeatSelControlGA(maxit=,max.features=,mu=,
lambda=,crossover.rate=,mutation.rate=)

mu
lambda crossover.rate

mutation.rate

selectFeatures FeatSelResult

fsr tsk
tsk = subsetTask(tsk,features=fsr$x)

Feature Extraction

benchmark(learners=,tasks=,resamplings=,measures=)

getBMR<object> AggrPerformance
FeatSelResults FilteredFeatures LearnerIds
LeanerShortNames Learners MeasureIds Measures 
Models Performances Predictions TaskDescs TaskIds
TuneResults

agri.task bc.task bh.task costiris.task iris.task
lung.task mtcars.task pid.task sonar.task
wpbc.task yeast.task

Benchmarking

makeStackedLearner(base.learners=,super.learner=,
method=)
• base.learners=
• super.learner=
• method=

• "average"
• "stack.nocv" "stack.cv"

• "hill.climb"
• "compress"

Ensembles

• resample benchmark
• makeTuneWrapper

makeFeatSelWrapper

Nested Resamplingimpute(obj=,target=,cols=,dummy.cols=,dummy.type=)

• obj=
• target=
• cols=
• dummy.cols=
• dummy.type= "numeric"

classes dummy.classes cols

cols classes
cols=list(V1=imputeMean()) V1

imputeMean()

imputeConst(const=) imputeMedian() imputeMode() 
imputeMin(multiplier=) imputeMax(multiplier=) 
imputeNormal(mean=,sd=) 
imputeHist(breaks=,use.mids=) 
imputeLearner(learner=,features=)
impute

reimpute

reimpute(obj=,desc=)
obj desc impute

Imputation

Wrappers

makeDummyFeaturesWrapper(learner=)
makeImputeWrapper(learner=,classes=,cols=)
makePreprocWrapper(learner=,train=,predict=) 
makePreprocWrapperCaret(learner=,...)
makeRemoveConstantFeaturesWrapper(learner=)

makeOverBaggingWrapper(learner=)
makeSMOTEWrapper(learner=)
makeUndersampleWrapper(learner=)
makeWeightedClassesWrapper(learner=)

makeCostSensClassifWrapper(learner=)
makeCostSensRegrWrapper(learner=)
makeCostSensWeightedPairsWrapper(learner=)

makeMultilabelBinaryRelevanceWrapper(learner=)
makeMultilabelClassifierChainsWrapper(learner=)
makeMultilabelDBRWrapper(learner=)
makeMultilabelNestedStackingWrapper(learner=)
makeMultilabelStackingWrapper(learner=)

makeBaggingWrapper(learner=)
makeConstantClassWrapper(learner=)
makeDownsampleWrapper(learner=,dw.perc=)
makeFeatSelWrapper(learner=,resampling=,control=)
makeFilterWrapper(learner=,fw.perc=,fw.abs=,
fw.threshold=)
makeMultiClassWrapper(learner=)
makeTuneWrapper(learner=,resampling=,par.set=,
control=)

Learner

Wrapper 1

Wrapper 2

Wrapper 3, etc.

configureMlr()
• show.info

TRUE
• on.learner.error "stop"

"warn"
"quiet" "stop"

• on.learner.warning
"warn" "quiet" "warn"

• on.par.without.desc
"stop" "warn" "quiet" "stop"

• on.par.out.of.bounds
"stop" "warn" "quiet" "stop"

• on.measure.not.applicable
"stop" "warn" "quiet" "stop"

• show.learner.output
TRUE

• on.error.dump
on.learner.error "stop" TRUE

getMlrOptions()

Configuration

parallelMap

parallelStart(mode=,cpus=,level=)
• mode

• "local" mapply
• "multicore"

parallel::mclapply
• "socket"
• "mpi"

parallel::makeCluster parallel::clusterMap
• "BatchJobs"

BatchJobs::batchMap
• cpus
• level "mlr.benchmark" 

"mlr.resample" "mlr.selectFeatures" 
"mlr.tuneParams" "mlr.ensemble"

parallelStop()

Parallelization

0 1 2 3

A

B

C
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DataCamp
Learn R for Data Science Interactively

eXtensible Time Series (xts) is a powerful package that 
provides an extensible time series class, enabling uniform 
handling of many R time series classes by extending zoo. 

Import From Files
> dat <- read.csv(tmp_file)
> xts(dat, order.by=as.Date(rownames(dat),"%m/%d/%Y"))
> dat_zoo <- read.zoo(tmp_file,

index.column=0, 
sep=",", 
format="%m/%d/%Y")

> dat_zoo <- read.zoo(tmp,sep=",",FUN=as.yearmon)
> dat_xts <- as.xts(dat_zoo)

> data_xts <- as.xts(matrix)
> tmp <- tempfile()
> write.zoo(data_xts,sep=",",file=tmp)

Load the package as follows:
> library(xts)

xts objects have three main components:
- coredata: always a matrix for xts objects, while it could also be a 

      vector for zoo objects
- index: vector of any Date, POSIXct, chron, yearmon,
yearqtr, or DateTime classes

- xtsAttributes: arbitrary attributes 

xts Objects

> xts1 <- xts(x=1:10, order.by=Sys.Date()-1:10)
> data <- rnorm(5)
> dates <- seq(as.Date("2017-05-01"),length=5,by="days")
> xts2 <- xts(x=data, order.by=dates)
> xts3 <- xts(x=rnorm(10),

order.by=as.POSIXct(Sys.Date()+1:10),
born=as.POSIXct("1899-05-08"))

> xts4 <- xts(x=1:10, order.by=Sys.Date()+1:10)

Selecting, Subsetting & Indexing
Select

> mar55 <- xts5["1955-03"] Get value for March 1955

Convert To And From xts
> data(AirPassengers)
> xts5 <- as.xts(AirPassengers)

Export xts Objects

Subset
> xts5_1954 <- xts5["1954"] Get all data from 1954
> xts5_janmarch <- xts5["1954/1954-03"] Extract data from Jan to March ‘54
> xts5_janmarch <- xts5["/1954-03"] Get all data until March ‘54
> xts4[ep1] Subset xts4 using ep2

Indexing

Merging
> merge(xts2,xts1,join='inner') Inner join of xts2 and xts1
                  xts2 xts1
2017-05-05 -0.8382068   10

> merge(xts2,xts1,join='left',fill=0)  Left join of xts2 and xts1,

                   xts2 xts1 fill empty spots with 0
2017-05-01  1.7482704    0
2017-05-02 -0.2314678    0
2017-05-03  0.1685517    0
2017-05-04  1.1685649    0
2017-05-05 -0.8382068   10

> rbind(xts1, xts4) Combine xts1 and xts4 by 
rows

Missing Values
> na.omit(xts5) Omit NA values in xts5
> xts_last <- na.locf(xts2) Fill missing values in xts2 using 

last observation
> xts_last <- na.locf(xts2, Fill missing values in xts2 using 

fromLast=TRUE) next observation
> na.approx(xts2) Interpolate NAs using linear   

approximation

> xts2[index(xts3)]  Extract rows with the index of xts3
> days <- c("2017-05-03","2017-05-23")
> xts3[days]  Extract rows using the vector days
> xts2[as.POSIXct(days,tz="UTC")]  Extract rows using days as POSIXct
> index <- which(.indexwday(xts1)==0|.indexwday(xts1)==6) Index of weekend days
> xts1[index]  Extract weekend days of xts1

Applying Functions
> ep1 <- endpoints(xts4,on="weeks",k=2) Take index values by time
[1] 0  5 10
> ep2 <- endpoints(xts5,on="years")
[1] 0  12  24  36  48  60  72  84  96 108 120 132 144
> period.apply(xts5,INDEX=ep2,FUN=mean) Calculate the yearly mean
> xts5_yearly <- split(xts5,f="years") Split xts5 by year
> lapply(xts5_yearly,FUN=mean) Create a list of yearly means
> do.call(rbind, Find the last observation in 

lapply(split(xts5,"years"), each year in xts5
function(w) last(w,n="1 month")))

> do.call(rbind, Calculate cumulative annual 
lapply(split(xts5,"years"), passengers 
cumsum))

> rollapply(xts5, 3, sd) Apply sd to rolling margins of xts5

Arithmetic Operations

> xts1 + merge(xts2,index(xts1),fill=0) Addition
e1

2017-05-04 5.231538
2017-05-05 5.829257
2017-05-06 4.000000
2017-05-07 3.000000
2017-05-08 2.000000
2017-05-09 1.000000
> xts1 - merge(xts2,index(xts1),fill=na.locf) Subtraction
                 e1
2017-05-04 5.231538
2017-05-05 5.829257
2017-05-06 4.829257
2017-05-07 3.829257
2017-05-08 2.829257
2017-05-09 1.829257

Reindexing

Shifting Index Values

coredata()or as.numeric()

> xts5 - lag(xts5) Period-over-period differences
> diff(xts5,lag=12,differences=1) Lagged differences

> xts3 + as.numeric(xts2) Addition
> xts3 * as.numeric(xts4) Multiplication
> coredata(xts4) - xts3 Subtraction
> coredata(xts4) / xts3 Division

Inspect Your Data
> core_data <- coredata(xts2) Extract core data of objects
> index(xts1) Extract index of objects

Class Attributes
> indexClass(xts2) Get index class
> indexClass(convertIndex(xts,'POSIXct')) Replacing index class
> indexTZ(xts5) Get index class
> indexFormat(xts5) <- "%Y-%m-%d" Change format of time display

Other Useful Functions
> .index(xts4) Extract raw numeric index of xts1
> .indexwday(xts3)   Value of week(day), starting on Sunday, 

in index of xts3
> .indexhour(xts3) Value of hour in index of xts3
> start(xts3) Extract first observation of xts3
> end(xts4) Extract last observation of xts4
> str(xts3) Display structure of  xts3
> time(xts1) Extract raw numeric index of xts1
> head(xts2) First part of xts2
> tail(xts2) Last part of xts2

Periods, Periodicity & Timestamps
> periodicity(xts5) Estimate frequency of observations
> to.yearly(xts5) Convert xts5 to yearly OHLC
> to.monthly(xts3) Convert xts3 to monthly OHLC
> to.quarterly(xts5) Convert xts5 to quarterly OHLC
> to.period(xts5,period="quarters") Convert to quarterly OHLC
> to.period(xts5,period="years")  Convert to yearly OHLC
> nmonths(xts5) Count the months in xts5
> nquarters(xts5) Count the quarters in xts5
> nyears(xts5) Count the years in xts5
> make.index.unique(xts3,eps=1e-4) Make index unique 
> make.index.unique(xts3,drop=TRUE) Remove duplicate times
> align.time(xts3,n=3600) Round index time to the next n seconds

Creating xts Objects

Replace & Update
> xts2[dates] <- 0 Replace values in xts2 on dates with 0
> xts5["1961"] <- NA Replace dates from 1961 with NA
> xts2["2016-05-02"] <- NA Replace the value at 1 specific index with NA

Time Zones
> tzone(xts1) <- "Asia/Hong_Kong" Change the time zone
> tzone(xts1) Extract the current time zone

> first(xts4,'1 week') Extract first 1 week
> first(last(xts4,'1 week'),'3 days') Get first 3 days of the last week of data

first() and last()



Plot Time Series

Time Series Cheat Sheet
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Auto-correlation

Filters

Parameter Estimation

Forecasting
1. tsplot(x=time, y=data)

2. plot(ts(data, start=start_time, frequency=gap))

3. ts.plot(ts(data, start=start_time, frequency=gap))

Simulation

Xt = ϕ1Xt−1 + ϕ2Xt−2 + … + ϕpXt−p + Wt

Autoregression of Order p

Moving Average of Order q

ARMA (p, q)

Xt = Zt + θ1Zt−1 + θ2Zt−2 + … + θqZt−p

Xt = ϕ1Xt−1 + ϕ2Xt−2 + … + ϕpXt−p+
Zt + θ1Zt−1 + θ2Zt−2 + … + θqZt−p

arima.sim(model=list(ar=c(               ),
ma=c(              )), n=n)

Simulation of ARMA (p, q)

ϕ1, . . . , ϕp
θ1, . . . , θq

Linear Filter: filter()

Differencing Filter: diff()

filter(data, filter=filter_coefficients, sides=2, 
         method="convolution",  circular=F)

diff(data, lag=4, differences=1)

 Use ACF and PACF to detect model

(Complete) Auto-correlation function: acf()

acf(data, type=‘correlation’, na.action=na.pass)

Partial Auto-correlation function: pacf()

OR: acf(data, type=‘partial’, na.action=na.pass)

pacf(data, na.action=na.pass)

ar(): To estimate parameters of an AR model

ar(x=data, aic=T, order.max = NULL, 

 c("yule-walker", "burg", "ols", "mle", "yw"))

arima(): To estimate parameters of an AM or 
ARMA model, and build model

arima(data, order=c(p, 0, q),method=c(‘ML’))

AICc(): Compare models using AICC

AICc(fittedModel)

Fit an ARMA time series model to the data

predict(arima_model, number_to_predict)

Forecasting future observations 
given a fitted ARMA model

predict(): Predict future observations given a  
fitted ARMA model

Plot Predicted values and Confidence Interval: 

fit<-predict(arima_model, number_to_predict) 

ts.plot(data, 

 xlim=c(1, length(data)+number_to_predict), 

 ylim=c(0, max(fit$pred+1.96*fit$se))) 

lines(length(data)+1:length(data)+ 

 number_to_predict, fit$pred)

OR: autoplot(forecast(arima_model, level=c(95), 
 h=number_to_predict))

https://creativecommons.org/licenses/by-sa/4.0/
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Intro

Deep Learning with Keras : : CHEAT SHEET 
Keras is a high-level neural networks API 
developed with a focus on enabling fast 
experimentation. It supports multiple back-
ends, including TensorFlow, CNTK and Theano. 

TensorFlow is a lower level mathematical 
library for building deep neural network 
architectures. The keras R package makes it 
easy to use Keras and TensorFlow in R.

Working with keras models

RStudio® is a trademark of RStudio, Inc.  •  CC BY SA  RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at keras.rstudio.com  •  keras 2.1.2  •  Updated: 2017-12

• Optimiser
• Loss
• Metrics

• Model
• Sequential

model
• Multi-GPU

model

Define Compile
• Batch size
• Epochs
• Validation

split

Fit

• Evaluate
• Plot

Evaluate

• classes
• probability

Predict The keras R package uses the Python keras library.  
You can install all the prerequisites directly from R.

library(keras) 
install_keras()

This installs the required libraries in an Anaconda 
environment or virtual environment 'r-tensorflow'. 

INSTALLATION

# input layer: use MNIST images 
mnist <- dataset_mnist() 
x_train <- mnist$train$x;  y_train <- mnist$train$y 
x_test <- mnist$test$x;  y_test <- mnist$test$y 

# reshape and rescale 
x_train <- array_reshape(x_train, c(nrow(x_train), 784)) 
x_test <- array_reshape(x_test, c(nrow(x_test), 784)) 
x_train <- x_train / 255;  x_test <- x_test / 255 

y_train <- to_categorical(y_train, 10) 
y_test <- to_categorical(y_test, 10) 

# defining the model and layers 
model <- keras_model_sequential()  
model %>%  
  layer_dense(units = 256, activation = 'relu', 

input_shape = c(784)) %>%  
  layer_dropout(rate = 0.4) %>%  
  layer_dense(units = 128, activation = 'relu') %>% 
  layer_dense(units = 10, activation = 'softmax’) 

# compile (define loss and optimizer) 
model %>% compile( 
  loss = 'categorical_crossentropy', 
  optimizer = optimizer_rmsprop(), 
  metrics = c('accuracy’) 
) 

# train (fit) 
model %>% fit( 
  x_train, y_train,  
  epochs = 30, batch_size = 128,  
  validation_split = 0.2 
) 
model %>% evaluate(x_test, y_test) 
model %>% predict_classes(x_test)

DEFINE A MODEL

keras_model() Keras Model 

keras_model_sequential() Keras Model composed of 
a linear stack of layers 

multi_gpu_model() Replicates a model on different 
GPUs

compile(object, optimizer, loss, metrics = NULL) 
Configure a Keras model for training

COMPILE A MODEL

fit(object, x = NULL, y = NULL, batch_size = NULL, 
epochs = 10,   verbose = 1, callbacks = NULL, …) 
Train a Keras model for a fixed number of epochs 
(iterations) 

fit_generator() Fits the model on data yielded batch-
by-batch by a generator 

train_on_batch() test_on_batch() Single gradient 
update or model evaluation over one batch of 
samples 

FIT A MODEL

evaluate(object, x = NULL, y = NULL, batch_size = 
NULL) Evaluate a Keras model 

evaluate_generator() Evaluates the model on a data 
generator

EVALUATE A MODEL

OTHER MODEL OPERATIONS

summary() Print a summary of a Keras model 

export_savedmodel() Export a saved model 

get_layer() Retrieves a layer based on either its 
name (unique) or index 

pop_layer() Remove the last layer in a model 

save_model_hdf5(); load_model_hdf5() Save/
Load models using HDF5 files 

serialize_model(); unserialize_model() 
Serialize a model to an R object 

clone_model() Clone a model instance 

freeze_weights(); unfreeze_weights() 
Freeze and unfreeze weights

PREDICT

predict() Generate predictions from a Keras model 

predict_proba() and predict_classes() 
Generates probability or class probability predictions 
for the input samples 

predict_on_batch() Returns predictions for a single 
batch of samples 

predict_generator() Generates predictions for the 
input samples from a data generator

layer_input() Input layer 

layer_dense() Add a densely-
connected NN layer to an output 

layer_activation() Apply an 
activation function to an output 

layer_dropout() Applies Dropout 
to the input 

layer_reshape() Reshapes an 
output to a certain shape 

layer_permute() Permute the 
dimensions of an input according 
to a given pattern 

layer_repeat_vector() Repeats 
the input n times 

layer_lambda(object, f) Wraps 
arbitrary expression as a layer 

layer_activity_regularization() 
Layer that applies an update to 
the cost function based input 
activity 

layer_masking() Masks a 
sequence by using a mask value to 
skip timesteps 

layer_flatten() Flattens an input

n

x f(x)

L2L1

https://keras.rstudio.com/reference/install_keras.html

CORE LAYERS

See ?install_keras 
for GPU instructions

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

https://keras.rstudio.com 

https://www.manning.com/books/deep-learning-with-r 
The “Hello, World!” 

of deep learning

Keras TensorFlow

https://keras.io/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
https://keras.rstudio.com/
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More layers
CONVOLUTIONAL LAYERS

POOLING LAYERS

layer_conv_1d() 1D, e.g. 
temporal convolution 

layer_conv_2d_transpose() 
Transposed 2D (deconvolution) 

layer_conv_2d() 2D, e.g. spatial 
convolution over images 

layer_conv_3d_transpose() 
Transposed 3D (deconvolution) 
layer_conv_3d() 3D, e.g. spatial 
convolution over volumes 

layer_conv_lstm_2d() 
Convolutional LSTM 

layer_separable_conv_2d() 
Depthwise separable 2D 

layer_upsampling_1d() 
layer_upsampling_2d() 
layer_upsampling_3d() 
Upsampling layer 

layer_zero_padding_1d() 
layer_zero_padding_2d() 
layer_zero_padding_3d()  
Zero-padding layer 

layer_cropping_1d() 
layer_cropping_2d() 
layer_cropping_3d() 
Cropping layer

layer_max_pooling_1d() 
layer_max_pooling_2d() 
layer_max_pooling_3d()  
Maximum pooling for 1D to 3D 

layer_average_pooling_1d() 
layer_average_pooling_2d() 
layer_average_pooling_3d() 
Average pooling for 1D to 3D 

layer_global_max_pooling_1d() 
layer_global_max_pooling_2d()  
layer_global_max_pooling_3d() 
Global maximum pooling 

layer_global_average_pooling_1d()  
layer_global_average_pooling_2d()  
layer_global_average_pooling_3d() 
Global average pooling

Preprocessing
SEQUENCE PREPROCESSING

pad_sequences() 
Pads each sequence to the same length (length of 
the longest sequence) 

skipgrams() 
Generates skipgram word pairs 

make_sampling_table() 
Generates word rank-based probabilistic sampling 
table 

TEXT PREPROCESSING

text_tokenizer() Text tokenization utility 

fit_text_tokenizer() Update tokenizer internal 
vocabulary 

save_text_tokenizer(); load_text_tokenizer() 
Save a text tokenizer to an external file 

texts_to_sequences(); 
texts_to_sequences_generator() 
Transforms each text in texts to sequence of integers 

texts_to_matrix(); sequences_to_matrix() 
Convert a list of sequences into a matrix 

text_one_hot() One-hot encode text to word indices 

text_hashing_trick() 
Converts a text to a sequence of indexes in a fixed-
size hashing space 

text_to_word_sequence()  
Convert text to a sequence of words (or tokens)

IMAGE PREPROCESSING

image_load() Loads an image into PIL format. 

flow_images_from_data() 
flow_images_from_directory()  
Generates batches of augmented/normalized data 
from images and labels, or a directory 

image_data_generator() Generate minibatches of 
image data with real-time data augmentation. 

fit_image_data_generator() Fit image data 
generator internal statistics to some sample data 

generator_next() Retrieve the next item 

image_to_array(); image_array_resize() 
image_array_save() 3D array representation

ACTIVATION LAYERS

layer_activation(object, activation) 
Apply an activation function to an output 

layer_activation_leaky_relu()  
Leaky version of a rectified linear unit 

layer_activation_parametric_relu() 
Parametric rectified linear unit 

layer_activation_thresholded_relu() 
Thresholded rectified linear unit 

layer_activation_elu() 
Exponential linear unit 

α

DROPOUT LAYERS

layer_dropout() 
Applies dropout to the input 

layer_spatial_dropout_1d() 
layer_spatial_dropout_2d() 
layer_spatial_dropout_3d() 
Spatial 1D to 3D version of dropout 

LOCALLY CONNECTED LAYERS

layer_locally_connected_1d() 
layer_locally_connected_2d() 
Similar to convolution, but weights are not 
shared, i.e. different filters for each patch

RECURRENT LAYERS

layer_simple_rnn() 
Fully-connected RNN where the output 
is to be fed back to input 

layer_gru() 
Gated recurrent unit - Cho et al 

layer_cudnn_gru() 
Fast GRU implementation backed 
by CuDNN 

layer_lstm() 
Long-Short Term Memory unit - 
Hochreiter 1997 

layer_cudnn_lstm() 
Fast LSTM implementation backed 
by CuDNN 

application_xception() 
xception_preprocess_input() 
Xception v1 model 

application_inception_v3() 
inception_v3_preprocess_input() 
Inception v3 model, with weights pre-trained 
on ImageNet 

application_inception_resnet_v2() 
inception_resnet_v2_preprocess_input() 
Inception-ResNet v2 model, with weights 
trained on ImageNet 

application_vgg16(); application_vgg19()  
VGG16 and VGG19 models 

application_resnet50() ResNet50 model 

application_mobilenet() 
mobilenet_preprocess_input() 
mobilenet_decode_predictions() 
mobilenet_load_model_hdf5() 
MobileNet model architecture 

ImageNet is a large database of images with 
labels, extensively used for deep learning 

imagenet_preprocess_input() 
imagenet_decode_predictions() 
Preprocesses a tensor encoding a batch of 
images for ImageNet, and decodes predictions

Keras applications are deep learning models 
that are made available alongside pre-trained 
weights. These models can be used for 
prediction, feature extraction, and fine-tuning.

A callback is a set of functions to be applied at 
given stages of the training procedure. You can 
use callbacks to get a view on internal states 
and statistics of the model during training. 

callback_early_stopping() Stop training when 
a monitored quantity has stopped improving 
callback_learning_rate_scheduler() Learning 
rate scheduler 
callback_tensorboard() TensorBoard basic 
visualizations 

Pre-trained models

Callbacks

RStudio® is a trademark of RStudio, Inc.  •  CC BY SA  RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at keras.rstudio.com  •  keras 2.1.2  •  Updated: 2017-12

Keras TensorFlow
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regexp matches example


a? zero or one quant("a?") .a.aa.aaa
a* zero or more quant("a*") .a.aa.aaa
a+ one or more quant("a+") .a.aa.aaa
a{n} exactly n quant("a{2}") .a.aa.aaa
a{n, } n or more quant("a{2,}") .a.aa.aaa
a{n, m} between n and m quant("a{2,4}") .a.aa.aaa

string 

(type this)

regexp 

(to mean this)

matches 

(which matches this)

example

(the result is the same as ref("abba"))

\\1 \1 (etc.) first () group, etc. ref("(a)(b)\\2\\1") abbaab

regexp matches example


^a start of string anchor("^a") aaa
a$ end of string anchor("a$") aaa

regexp matches example


ab|d or alt("ab|d") abcde
[abe] one of alt("[abe]") abcde
[^abe] anything but alt("[^abe]") abcde
[a-c] range alt("[a-c]") abcde

regex(pattern, ignore_case = FALSE, multiline = 
FALSE, comments = FALSE, dotall = FALSE, ...) 
Modifies a regex to ignore cases, match end of 
lines as well of end of strings, allow R comments 
within regex's , and/or to have . match everything 
including \n. 

str_detect("I", regex("i", TRUE)) 


fixed() Matches raw bytes but will miss some 
characters that can be represented in multiple 
ways (fast). str_detect("\u0130", fixed("i"))


coll() Matches raw bytes and will use locale 
specific collation rules to recognize characters 
that can be represented in multiple ways (slow). 
str_detect("\u0130", coll("i", TRUE, locale = "tr"))


boundary() Matches boundaries between 
characters, line_breaks, sentences, or words. 
str_split(sentences, boundary("word"))

Special Character Represents
\\ \
\" "
\n new line

Need to Know Regular Expressions -
Pattern arguments in stringr are interpreted as 
regular expressions after any special characters 
have been parsed.


In R, you write regular expressions as strings, 
sequences of characters surrounded by quotes 
("") or single quotes(''). 


Some characters cannot be represented directly 
in an R string . These must be represented as 
special characters, sequences of characters that 
have a specific meaning., e.g.

RStudio® is a trademark of RStudio, PBC  •  CC BY SA  RStudio  •  info@rstudio.com  •  844-448-1212  •  rstudio.com  •  Learn more at stringr.tidyverse.org  •  Diagrams from @LVaudor on Twitter  •  stringr  1.4.0+  •  Updated:  2021-08

Run ?"'" to see a complete list

Because of this, whenever a \ appears in a regular 
expression, you must write it as \\ in the string 
that represents the regular expression.


Use writeLines() to see how R views your string 
after all special characters have been parsed.


writeLines("\\.") 

# \.


writeLines("\\ is a backslash") 

# \ is a backslash

MATCH CHARACTERS

quant <- function(rx) str_view_all(".a.aa.aaa", rx)QUANTIFIERS

anchor <- function(rx) str_view_all("aaa", rx)ANCHORS

GROUPS
Use parentheses to set precedent (order of evaluation) and create groups

Use an escaped number to refer to and duplicate parentheses groups that occur 
earlier in a pattern. Refer to each group by its order of appearance

ref <- function(rx) str_view_all("abbaab", rx)

alt <- function(rx) str_view_all("abcde", rx)ALTERNATES

look <- function(rx) str_view_all("bacad", rx)LOOK AROUNDS

INTERPRETATION

Patterns in stringr are interpreted as regexs. To 
change this default, wrap the pattern in one of:

regexp 
 matches 
 example

(ab|d)e sets precedence alt("(ab|d)e") abcde

see <- function(rx) str_view_all("abc ABC 123\t.!?\\(){}\n", rx)

Regular expressions, or regexps, are a concise language for 
describing patterns in strings. 

a b c d e f

g h i j k l

m n o p q r

s t u v w x

y z

[:lower:]

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z

[:upper:]

[:alpha:]

0 1 2 3 4 5 6 7 8 9

[:digit:]

[:alnum:]

[:punct:]

. , : ; ? ! / * @ #

- _ " ' [ ] { } ( )

[:graph:]

[:blank:]

[:space:]

space
tab

1 Many base R functions require classes to be wrapped in a second set of [ ], e.g.  [[:digit:]]

string  
(type this)

regexp 

(to mean this)

matches 

(which matches this)

example


a  (etc.) a (etc.) see("a") abc ABC 123   .!?\(){}
\\. \. . see("\\.") abc ABC 123   .!?\(){}
\\! \! ! see("\\!") abc ABC 123   .!?\(){}
\\? \? ? see("\\?") abc ABC 123   .!?\(){}
\\\\ \\ \ see("\\\\") abc ABC 123   .!?\(){}
\\( \( ( see("\\(") abc ABC 123   .!?\(){}
\\) \) ) see("\\)") abc ABC 123   .!?\(){}
\\{ \{ { see("\\{") abc ABC 123   .!?\(){}
\\} \} } see( "\\}") abc ABC 123   .!?\(){}
\\n \n new line (return) see("\\n") abc ABC 123   .!?\(){}
\\t \t tab see("\\t") abc ABC 123   .!?\(){}
\\s \s any whitespace  (\S for non-whitespaces) see("\\s") abc ABC 123   .!?\(){}
\\d \d any digit  (\D for non-digits) see("\\d") abc ABC 123   .!?\(){}
\\w \w any word character  (\W for non-word chars) see("\\w") abc ABC 123   .!?\(){}
\\b \b word boundaries see("\\b") abc ABC 123   .!?\(){}

[:digit:] digits see("[:digit:]") abc ABC 123   .!?\(){}
[:alpha:] letters see("[:alpha:]") abc ABC 123   .!?\(){}
[:lower:] lowercase letters see("[:lower:]") abc ABC 123   .!?\(){}
[:upper:] uppercase letters see("[:upper:]") abc ABC 123   .!?\(){}
[:alnum:] letters and numbers see("[:alnum:]") abc ABC 123   .!?\(){}
[:punct:] punctuation see("[:punct:]") abc ABC 123   .!?\(){}
[:graph:] letters, numbers, and punctuation see("[:graph:]") abc ABC 123   .!?\(){}
[:space:] space characters (i.e. \s) see("[:space:]") abc ABC 123   .!?\(){}
[:blank:] space and tab (but not new line) see("[:blank:]") abc ABC 123   .!?\(){}
. every character except a new line see(".") abc ABC 123   .!?\(){}

1 
1 
1 
1 
1 

1 
1 
1 
1 

2 ...1 n
n ... m

1 2 ... n

regexp matches example


a(?=c) followed by look("a(?=c)") bacad
a(?!c) not followed by look("a(?!c)") bacad
(?<=b)a preceded by look("(?<=b)a") bacad
(?<!b)a not preceded by look("(?<!b)a") bacad

new line

| ` = + ^

~ < > $

[:symbol:]

.
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Data visualization with ggplot2 : : CHEAT SHEET 
ggplot2 is based on the grammar of graphics, the idea 
that you can build every graph from the same 
components: a data set, a coordinate system, 
and geoms—visual marks that represent data points.

Basics
GRAPHICAL PRIMITIVES

a + geom_blank() and a + expand_limits() 
Ensure limits include values across all plots.


b + geom_curve(aes(yend = lat + 1,  
xend = long + 1), curvature = 1) - x, xend, y, yend, 
alpha, angle, color, curvature, linetype, size


a + geom_path(lineend = "butt",  
linejoin = "round", linemitre = 1)  
x, y, alpha, color, group, linetype, size


a + geom_polygon(aes(alpha = 50)) - x, y, alpha, 
color, fill, group, subgroup, linetype, size


b + geom_rect(aes(xmin = long, ymin = lat,  
xmax = long + 1, ymax = lat + 1)) - xmax, xmin, 
ymax, ymin, alpha, color, fill, linetype, size


a + geom_ribbon(aes(ymin = unemploy - 900, 
ymax = unemploy + 900)) - x, ymax, ymin,  
alpha, color, fill, group, linetype, size

+ =

To display values, map variables in the data to visual 
properties of the geom (aesthetics) like size, color, and x 
and y locations.

+ =

data geom

x = F · y = A

coordinate 
system

plot

data geom

x = F · y = A

color = F

size = A

coordinate 
system

plot

Complete the template below to build a graph.
required

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot 
that you finish by adding layers to. Add one geom 
function per layer.     


last_plot() Returns the last plot. 


ggsave("plot.png", width = 5, height = 5) Saves last plot 
as 5’ x 5’ file named "plot.png" in working directory. 
Matches file type to file extension.

F M A

F M A

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept = 0, slope = 1))

b + geom_hline(aes(yintercept = lat))

b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend = lat + 1, xend = long + 1))

b + geom_spoke(aes(angle = 1:1155, radius = 1))

a <- ggplot(economics, aes(date, unemploy))

b <- ggplot(seals, aes(x = long, y = lat))

ONE VARIABLE    continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin") 
x, y, alpha, color, fill, linetype, size


c + geom_density(kernel = "gaussian") 
x, y, alpha, color, fill, group, linetype, size, weight


c + geom_dotplot() 
x, y, alpha, color, fill


c + geom_freqpoly()  
x, y, alpha, color, group, linetype, size


c + geom_histogram(binwidth = 5)  
x, y, alpha, color, fill, linetype, size, weight


c2 + geom_qq(aes(sample = hwy))  
x, y, alpha, color, fill, linetype, size, weight

discrete 
d <- ggplot(mpg, aes(fl))

d + geom_bar()  
x, alpha, color, fill, linetype, size, weight

e + geom_label(aes(label = cty), nudge_x = 1, 
nudge_y = 1) - x, y, label, alpha, angle, color, 
family, fontface, hjust, lineheight, size, vjust


e + geom_point()  
x, y, alpha, color, fill, shape, size, stroke


e + geom_quantile()  
x, y, alpha, color, group, linetype, size, weight


e + geom_rug(sides = “bl")  
x, y, alpha, color, linetype, size


e + geom_smooth(method = lm)  
x, y, alpha, color, fill, group, linetype, size, weight


e + geom_text(aes(label = cty), nudge_x = 1, 
nudge_y = 1) - x, y, label, alpha, angle, color, 
family, fontface, hjust, lineheight, size, vjust

one discrete, one continuous

f <- ggplot(mpg, aes(class, hwy))

f + geom_col()  
x, y, alpha, color, fill, group, linetype, size


f + geom_boxplot()  
x, y, lower, middle, upper, ymax, ymin, alpha, 
color, fill, group, linetype, shape, size, weight


f + geom_dotplot(binaxis = "y", stackdir = “center") 
x, y, alpha, color, fill, group


f + geom_violin(scale = “area")  
x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g <- ggplot(diamonds, aes(cut, color))

g + geom_count()  
x, y, alpha, color, fill, shape, size, stroke


e + geom_jitter(height = 2, width = 2) 
x, y, alpha, color, fill, shape, size

THREE VARIABLES

seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

l + geom_raster(aes(fill = z), hjust = 0.5,
vjust = 0.5, interpolate = FALSE)
x, y, alpha, fill

l + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size, width

h + geom_bin2d(binwidth = c(0.25, 500)) 
x, y, alpha, color, fill, linetype, size, weight


h + geom_density_2d() 
x, y, alpha, color, group, linetype, size


h + geom_hex() 
x, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)

j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

maps

data <- data.frame(murder = USArrests$Murder, 
               state = tolower(rownames(USArrests))) 
map <- map_data("state") 
k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) 
+ expand_limits(x = map$long, y = map$lat)

 map_id, alpha, color, fill, linetype, size

Not  
required, 
sensible 
defaults 
supplied

Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables.
Each function returns a layer.

TWO VARIABLES

both continuous

e <- ggplot(mpg, aes(cty, hwy))

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))
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ggplot (data =  <DATA> ) + 
  <GEOM_FUNCTION> (mapping = aes( <MAPPINGS> ), 
  stat = <STAT> , position = <POSITION> ) +     
  <COORDINATE_FUNCTION>  +

  <FACET_FUNCTION>  +

  <SCALE_FUNCTION>  +

  <THEME_FUNCTION>

l + geom_contour(aes(z = z))
x, y, z, alpha, color, group, linetype, size, weight

l + geom_contour_filled(aes(fill = z))
x, y, alpha, color, fill, group, linetype, size, subgroup

i + geom_area() 
x, y, alpha, color, fill, linetype, size


i + geom_line() 
x, y, alpha, color, group, linetype, size


i + geom_step(direction = "hv") 
x, y, alpha, color, group, linetype, size

j + geom_crossbar(fatten = 2) - x, y, ymax,  
ymin, alpha, color, fill, group, linetype, size


j + geom_errorbar() - x, ymax, ymin,  
alpha, color, group, linetype, size, width 
Also geom_errorbarh().


j + geom_linerange() 
x, ymin, ymax, alpha, color, group, linetype, size


j + geom_pointrange() - x, y, ymin, ymax,  
alpha, color, fill, group, linetype, shape, size

Aes
color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid",  
2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 
6 = "twodash")

lineend - string ("round", "butt", or "square")

linejoin - string ("round", "mitre", or "bevel")

size - integer (line width in mm)

shape - integer/shape name or  
                 a single character ("a")

Common aesthetic values.
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Scales Coordinate Systems
A stat builds new variables to plot (e.g., count, prop). 

Stats  An alternative way to build a layer.

+ =
data geom


x = x · 
y = ..count..

coordinate 
system

plot

fl cty cyl
x ..count..

stat

Visualize a stat by changing the default stat of a geom 
function, geom_bar(stat="count") or by using a stat 
function, stat_count(geom="bar"), which calls a default 
geom to make a layer (equivalent to a geom function).

Use ..name.. syntax to map stat variables to aesthetics.

i + stat_density_2d(aes(fill = ..level..), 

geom = "polygon")

stat function geommappings

variable created by stat

geom to use

c + stat_bin(binwidth = 1, boundary = 10) 
x, y |  ..count.., ..ncount.., ..density.., ..ndensity..

c + stat_count(width = 1)  x, y |  ..count.., ..prop..

c + stat_density(adjust = 1, kernel = "gaussian")  
x, y |  ..count.., ..density.., ..scaled..


e + stat_bin_2d(bins = 30, drop = T) 
x, y, fill |  ..count.., ..density..

e + stat_bin_hex(bins = 30) x, y, fill |  ..count.., ..density..

e + stat_density_2d(contour = TRUE, n = 100) 
x, y, color, size |  ..level..

e + stat_ellipse(level = 0.95, segments = 51, type = "t")


l + stat_contour(aes(z = z)) x, y, z, order |  ..level..

l + stat_summary_hex(aes(z = z), bins = 30, fun = max) 
x, y, z, fill |  ..value..

l + stat_summary_2d(aes(z = z), bins = 30, fun = mean) 
x, y, z, fill |  ..value..


f + stat_boxplot(coef = 1.5)  
x, y |  ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax..

f + stat_ydensity(kernel = "gaussian", scale = "area") x, y 
| ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width..


e + stat_ecdf(n = 40)  x, y |  ..x.., ..y..

e + stat_quantile(quantiles = c(0.1, 0.9),  
formula = y ~ log(x), method = "rq")  x, y | ..quantile..

e + stat_smooth(method = "lm", formula = y ~ x, se = T,  
level = 0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax..


ggplot() + xlim(-5, 5) + stat_function(fun = dnorm,  
n = 20, geom = “point”) x |  ..x.., ..y..

ggplot() + stat_qq(aes(sample = 1:100))  
x, y, sample |  ..sample.., ..theoretical..

e + stat_sum() x, y, size |  ..n.., ..prop..

e + stat_summary(fun.data = "mean_cl_boot")

h + stat_summary_bin(fun = "mean", geom = "bar")

e + stat_identity()

e + stat_unique()

Scales map data values to the visual values of an 
aesthetic. To change a mapping, add a new scale.

n <- d + geom_bar(aes(fill = fl))

n + scale_fill_manual(

     values = c("skyblue", "royalblue", "blue", "navy"),

     limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"),

     name = "fuel", labels = c("D", "E", "P", "R"))

scale_
aesthetic 
to adjust

prepackaged 
scale to use

scale-specific 
arguments

title to use in 
legend/axis

labels to use 
in legend/axis

breaks to use in 
legend/axis

range of 
values to include 

in mapping

GENERAL PURPOSE SCALES

Use with most aesthetics

scale_*_continuous() - Map cont’ values to visual ones.

scale_*_discrete() - Map discrete values to visual ones.

scale_*_binned() - Map continuous values to discrete bins.

scale_*_identity() - Use data values as visual ones.

scale_*_manual(values = c()) - Map discrete values to 
manually chosen visual ones.

scale_*_date(date_labels = "%m/%d"),  
date_breaks = "2 weeks") - Treat data values as dates. 

scale_*_datetime() -  Treat data values as date times.  
Same as scale_*_date(). See ?strptime for label formats.

X & Y LOCATION SCALES

Use with x or y aesthetics (x shown here)

scale_x_log10() - Plot x on log10 scale.

scale_x_reverse() - Reverse the direction of the x axis.

scale_x_sqrt() - Plot x on square root scale.

COLOR AND FILL SCALES (DISCRETE)

n + scale_fill_brewer(palette = "Blues")  
For palette choices: 
RColorBrewer::display.brewer.all()

n + scale_fill_grey(start = 0.2,  
end = 0.8, na.value = "red") 

COLOR AND FILL SCALES (CONTINUOUS)

o <- c + geom_dotplot(aes(fill = ..x..))


o + scale_fill_distiller(palette = “Blues”)


o + scale_fill_gradient(low="red", high=“yellow")


o + scale_fill_gradient2(low = "red", high = “blue”, 
mid = "white", midpoint = 25) 


o + scale_fill_gradientn(colors = topo.colors(6)) 
Also: rainbow(), heat.colors(), terrain.colors(), 
cm.colors(), RColorBrewer::brewer.pal()

SHAPE AND SIZE SCALES 
p <- e + geom_point(aes(shape = fl, size = cyl))


p + scale_shape() + scale_size()

p + scale_shape_manual(values = c(3:7))


p + scale_radius(range = c(1,6))

p + scale_size_area(max_size = 6)

r <- d + geom_bar()

r + coord_cartesian(xlim = c(0, 5)) - xlim, ylim 
The default cartesian coordinate system.


r + coord_fixed(ratio = 1/2)  
ratio, xlim, ylim - Cartesian coordinates with 
fixed aspect ratio between x and y units.


ggplot(mpg, aes(y = fl)) + geom_bar() 
Flip cartesian coordinates by switching  
x and y aesthetic mappings. 


r + coord_polar(theta = "x", direction=1)  
theta, start, direction - Polar coordinates.


r + coord_trans(y = “sqrt") - x, y, xlim, ylim 
Transformed cartesian coordinates. Set xtrans 
and ytrans to the name of a window function.


π + coord_quickmap() 
π + coord_map(projection = "ortho", orientation 
= c(41, -74, 0)) - projection,  xlim, ylim

Map projections from the mapproj package 
(mercator (default), azequalarea, lagrange, etc.).

Position Adjustments
Position adjustments determine how to arrange geoms 
that would otherwise occupy the same space.


s <- ggplot(mpg, aes(fl, fill = drv))


s + geom_bar(position = "dodge") 
Arrange elements side by side.

s + geom_bar(position = "fill") 
Stack elements on top of one  
another, normalize height.


e + geom_point(position = "jitter") 
Add random noise to X and Y position of  
each element to avoid overplotting.


e + geom_label(position = "nudge") 
Nudge labels away from points.


s + geom_bar(position = "stack") 
Stack elements on top of one another.


Each position adjustment can be recast as a function  
with manual width and height arguments:

s + geom_bar(position = position_dodge(width = 1))

A
B

Themes
r + theme_bw() 
White background 
with grid lines.


r + theme_gray() 
Grey background  
(default theme).


r + theme_dark() 
Dark for contrast.

r + theme_classic()

r + theme_light()

r + theme_linedraw()

r + theme_minimal() 
Minimal theme.


r + theme_void() 
Empty theme.

Faceting
Facets divide a plot into  
subplots based on the  
values of one or more  
discrete variables.


t <- ggplot(mpg, aes(cty, hwy)) + geom_point()


t + facet_grid(cols = vars(fl)) 
Facet into columns based on fl.


t + facet_grid(rows = vars(year)) 
Facet into rows based on year.


t + facet_grid(rows = vars(year), cols = vars(fl)) 
Facet into both rows and columns.


t + facet_wrap(vars(fl)) 
Wrap facets into a rectangular layout.


Set scales to let axis limits vary across facets.


t + facet_grid(rows = vars(drv), cols = vars(fl),  
                              scales = "free") 
       x and y axis limits adjust to individual facets: 
                  "free_x" - x axis limits adjust 
                  "free_y" - y axis limits adjust


Set labeller to adjust facet label:


t + facet_grid(cols = vars(fl), labeller = label_both)


t + facet_grid(rows = vars(fl), 

                              labeller = label_bquote(alpha ^ .(fl)))

fl: c fl: d fl: e fl: p fl: r

↵c ↵d ↵e ↵p ↵r

Labels and Legends
Use labs() to label the elements of your plot.

t + labs(x = "New x axis label",  y = "New y axis label", 
     title ="Add a title above the plot",  
     subtitle = "Add a subtitle below title", 
     caption = "Add a caption below plot", 
     alt = "Add alt text to the plot",

         <aes>  = "New   <aes>    legend title") 


t + annotate(geom = "text", x = 8, y = 9, label = “A") 
Places a geom with manually selected aesthetics.

p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded 
or overlapping labels with guide_axis(n.dodge or angle).

n + guides(fill = “none") Set legend type for each  
aesthetic: colorbar, legend, or none (no legend).

n + theme(legend.position = "bottom") 
Place legend at "bottom", "top", "left", or “right”.

n + scale_fill_discrete(name = "Title",  
labels = c("A", "B", "C", "D", "E"))  
Set legend title and labels with a scale function.

<AES> <AES>

Zooming
Without clipping (preferred):

t + coord_cartesian(xlim = c(0, 100), ylim = c(10, 20))

With clipping (removes unseen data points):

t + xlim(0, 100) + ylim(10, 20)

t + scale_x_continuous(limits = c(0, 100)) + 
scale_y_continuous(limits = c(0, 100))
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long
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t

r + theme() Customize aspects of the theme such  
as axis, legend, panel, and facet properties. 
r + ggtitle(“Title”) + theme(plot.title.postion = “plot”) 
r + theme(panel.background = element_rect(fill = “blue”))  

Override defaults with scales package.
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Search inside 
environment

Syntax highlighting based 
on your file's extension

Code diagnostics that appear in the margin. 
Hover over diagnostic symbols for details.

Tab completion to finish function 
names, file paths, arguments, and more.

Multi-language code snippets to 
quickly use common blocks of code.

Open in new 
window

Save Find and 
replace

Compile as 
notebook

Run 
selected 
code

Re-run 
previous code

Source with or  
w/out Echo or  
as a Local Job

Show file 
outline

Jump to function in file Change file type

Navigate 
backwards/
forwards

A File browser keyed to your working directory. 
Click on file or directory name to open.

Path to displayed directory

Create 
folder

Delete 
file 

Rename 
file 

Change  
directory

Displays saved objects by 
type with short description

View function 
source code

View in data 
viewer

Load 
workspace

Save 
workspace

Import data 
with wizard

Clear R 
workspace

Display objects 
as list or grid

Choose environment to display from 
list of parent environments

History of past 
commands to 
run/copy

Manage 
external 
databases

Working 
Directory

Maximize, 
minimize panes

Drag pane 
boundaries

Multiple cursors/column selection 
with Alt + mouse drag.

R tutorials

Ctrl/Cmd + a 
to see history

More file 
options

RStudio IDE : : CHEAT SHEET 
Source Editor
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RStudio opens plots in a dedicated Plots pane

Navigate 
recent plots

Open in 
window

Export 
plot

Delete 
plot

Delete 
all plots

RStudio opens documentation in a dedicated Help pane

Home page of 
helpful links 

Search within 
help file

Search for 
help file

Viewer pane displays HTML content, such as Shiny 
apps, RMarkdown reports, and interactive visualizations

Stop Shiny 
app

Publish to shinyapps.io, 
rpubs, RSConnect, …

Refresh 

Tab Panes
Open Shiny, R Markdown, 
knitr, Sweave, LaTeX, .Rd files 
and more in Source Pane

RStudio recognizes that files named app.R, 
server.R, ui.R, and global.R belong to a shiny app

Run 
app

Choose 
location to 
view app

Publish to 
shinyapps.io 
or server

Manage 
publish 
accounts

Documents and Apps

Access markdown guide at 

Help > Markdown Quick Reference 
See reverse side for more on Visual Editor

Check 
spelling

Render 
output

Choose 
output 
format

Configure 
render 
options

Insert 
code 
chunk

Jump to 
previous 
chunk

Jump 
to next 
chunk

Run 
code

Publish 
to server

Show file 
outline

Set knitr 
chunk 
options

Run this and 
all previous 
code chunks

Run this 
code chunkJump to 

section 
or chunk

Visual 
Editor 
(reverse 
side)

GUI Package manager lists every installed package

Click to load package with 
library(). Unclick to detach 
package with detach().

Delete 
from 
library

Install 
Packages

Update 
Packages

Package 
version 
installed

Browse 
package site

View(<data>) opens spreadsheet like view of data set

Sort by 
values

Filter rows by value 
or value range

Search 
for value

Turn on at Tools > Project Options > Git/SVN
• Added

• Deleted


• Modified

• Renamed
 • Untracked

A

D

M

R
?

Stage 
files:

Show file diff to view file differences

Current 
branch

Commit 
staged files

Push/Pull  
to remote

View 
History

Open shell to type commands

Version

Control

Package Development

Roxygen guide at Help > Roxygen Quick Reference 


See package information in the Build Tab

Create a new package with 
File > New Project > New Directory > R Package

Enable roxygen documentation with 
Tools > Project Options > Build Tools

Install package 
and restart R

Run R CMD 
check

Run devtools::load_all() 
and reload changes

Customize 
package build 
options

Run 
package 
tests

Clear output 
and rebuild

Use debug(), browser(), or a breakpoint and execute 
your code to open the debugger mode.

Debug Mode

Examine variables 
in executing 
environment

Click next to line number to 
add/remove a breakpoint.

Select function 
in traceback to 
debug

Highlighted line shows where 
execution has paused

Run commands in 
environment where 
execution has paused

Step through 
code one line 
at a time

Step into and 
out of functions 
to run

Resume 
execution

Quit debug 
mode

Open traceback to examine 
the functions that R called 
before the error occurred

Launch debugger 
mode from origin 
of error

View 
memory 
usage

R Markdown 
Build Log

Run scripts in 
separate sessions
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RUN CODE Windows/Linux Mac
Search command history Ctrl+a Cmd+a
Interrupt current command Esc Esc
Clear console Ctrl+L Ctrl+L

NAVIGATE CODE
Go to File/Function Ctrl+. Ctrl+.

WRITE CODE
Attempt completion Tab or 

Ctrl+Space
Tab or 
    Ctrl+Space

Insert <- (assignment operator) Alt+- Option+-
Insert %>% (pipe operator) Ctrl+Shift+M Cmd+Shift+M
(Un)Comment selection Ctrl+Shift+C Cmd+Shift+C

MAKE PACKAGES Windows/Linux Mac
Load All (devtools) Ctrl+Shift+L Cmd+Shift+L
Test Package (Desktop) Ctrl+Shift+T Cmd+Shift+T
Document Package Ctrl+Shift+D Cmd+Shift+D
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Extend the open source server with a  
commercial license, support, and more:

• open and run multiple R sessions at once
• tune your resources to improve performance
• administrative tools for managing user sessions
• collaborate real-time with others in shared projects
• switch easily from one version of R to a different version
• integrate with your authentication, authorization, and audit practices
• work in the RStudio IDE, JupyterLab, Jupyter Notebooks, or VS Code

Download a free 45 day evaluation at 

www.rstudio.com/products/workbench/evaluation/ 

WHY RSTUDIO WORKBENCH?

Keyboard Shortcuts
DOCUMENTS AND APPS
Knit Document (knitr) Ctrl+Shift+K Cmd+Shift+K
Insert chunk (Sweave & Knitr) Ctrl+Alt+I Cmd+Option+I
Run from start to current line Ctrl+Alt+B Cmd+Option+B

MORE KEYBOARD SHORTCUTS
Keyboard Shortcuts Help Alt+Shift+K Option+Shift+K
Show Command Palette Ctrl+Shift+P Cmd+Shift+P

RStudio 

Workbench

Visual Editor

Share Projects

Share Project 
with Collaborators

Active shared 
collaborators

Select 

R Version

Start new R Session 
in current  project 

Close R Session 
in project 

JHT

Name of 
current 
project

RStudio saves the call history, 
workspace, and working 
directory associated with a 
project. It reloads each when 
you re-open a project. 

File > New Project

Check 
spelling

Render 
output

Choose 
output 
format

Choose 
output 
location

Insert 
code 
chunk

Jump to 
previous 
chunk

Jump 
to next 
chunk

Run 
selected 
lines

Publish 
to server

Show file 
outline

Set knitr 
chunk 
options

Run this and 
all previous 
code chunks

Run this 
code chunk

Back to 
Source Editor 
(front page)

File outline

Jump to chunk 
or header

Add/Edit 
attributes

Block 
format

Insert 
verbatim 
code

Clear 
formatting

Lists and 
block 
quotes

Links Citations Images

More 
formatting

Insert blocks, 
citations, 
equations, and 
special 
characters

Insert and 
edit tables

Search for keyboard shortcuts with 
Tools > Show Command Palette 
or Ctrl/Cmd + Shift + P.

View the Keyboard Shortcut Quick 
Reference with Tools > Keyboard 
Shortcuts or Alt/Option + Shift + K

Run Remote Jobs
Run R on remote clusters 
(Kubernetes/Slurm) via the 
Job Launcher

Launch a jobMonitor 
launcher jobs

Run launcher 
jobs remotely
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Study Guide: Data Retrieval with SQL
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August 21, 2020

General concepts

r Structured Query Language – Structured Query Language, abbreviated as SQL, is a
language that is largely used in the industry to query data from databases.

r Query structure – Queries are usually structured as follows:

SQL

-- Select fields.....................mandatory
SELECT
....col_1,
....col_2,
........ ,
....col_n

-- Source of data....................mandatory
FROM table t

-- Gather info from other sources....optional
JOIN other_table ot
..ON (t.key = ot.key)

-- Conditions........................optional
WHERE some_condition(s)

-- Aggregating.......................optional
GROUP BY column_group_list

-- Sorting values....................optional
ORDER BY column_order_list

-- Restricting aggregated values.....optional
HAVING some_condition(s)

-- Limiting number of rows...........optional
LIMIT some_value

Remark: the SELECT DISTINCT command can be used to ensure not having duplicate rows.

r Condition – A condition is of the following format:

SQL
some_col some_operator some_col_or_value

where some_operator can be among the following common operations:

Category Operator Command

General

Equality / non-equality = / !=, <>

Inequalities >=, >, <, <=

Belonging IN (val_1, ..., val_n)

And / or AND / OR

Check for missing value IS NULL

Between bounds BETWEEN val_1 AND val_2

Strings Pattern matching LIKE ’%val%’

r Joins – Two tables table_1 and table_2 can be joined in the following way:

SQL
...

FROM table_1 t1
type_of_join table_2 t2
..ON (t2.key = t1.key)

...

where the different type_of_join commands are summarized in the table below:

Type of join Illustration

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL JOIN

Remark: joining every row of table 1 with every row of table 2 can be done with the CROSS JOIN
command, and is commonly known as the cartesian product.

Aggregations

r Grouping data – Aggregate metrics are computed on grouped data in the following way:
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The SQL command is as follows:

SQL
SELECT
....col_1,
....agg_function(col_2)
FROM table
GROUP BY col_1

r Grouping sets – The GROUPING SETS command is useful when there is a need to compute
aggregations across different dimensions at a time. Below is an example of how all aggregations
across two dimensions are computed:

SQL
SELECT
....col_1,
....col_2,
....agg_function(col_3)
FROM table
GROUP BY (
..GROUPING SETS
....(col_1),
....(col_2),
....(col_1, col_2)
)

r Aggregation functions – The table below summarizes the main aggregate functions that
can be used in an aggregation query:

Category Operation Command

Values

Mean AVG(col)

Percentile PERCENTILE_APPROX(col, p)

Sum / # of instances SUM(col) / COUNT(col)

Max / min MAX(col) / MIN(col)

Variance / standard deviation VAR(col) / STDEV(col)

Arrays Concatenate into array collect_list(col)

Remark: the median can be computed using the PERCENTILE_APPROX function with p equal to 0.5.

r Filtering – The table below highlights the differences between the WHERE and HAVING com-
mands:

WHERE HAVING

- Filter condition applies to individual rows
- Statement placed right after FROM

- Filter condition applies to aggregates
- Statement placed right after GROUP BY

Remark: if WHERE and HAVING are both in the same query, WHERE will be executed first.

Window functions

r Definition – A window function computes a metric over groups and has the following struc-
ture:

The SQL command is as follows:

SQL

some_window_function() OVER(PARTITION BY some_col ORDER BY another_col)

Remark: window functions are only allowed in the SELECT clause.

r Row numbering – The table below summarizes the main commands that rank each row
across specified groups, ordered by a specific column:

Command Description Example

ROW_NUMBER() Ties are given different ranks 1, 2, 3, 4

RANK() Ties are given same rank and skip numbers 1, 2, 2, 4

DENSE_RANK() Ties are given same rank and don’t skip numbers 1, 2, 2, 3

r Values – The following window functions allow to keep track of specific types of values with
respect to the partition:

Command Description

FIRST_VALUE(col) Takes the first value of the column

LAST_VALUE(col) Takes the last value of the column

LAG(col, n) Takes the nth previous value of the column

LEAD(col, n) Takes the nth following value of the column

NTH_VALUE(col, n) Takes the nth value of the column
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Advanced functions

r SQL tips – In order to keep the query in a clear and concise format, the following tricks are
often done:

Operation Command Description

Renaming
columns

SELECT operation_on_column AS col_name
New column names shown in
query results

Abbreviating
tables

FROM table_1 t1

Abbreviation used within
query for simplicity in
notations

Simplifying
group by GROUP BY col_number_list

Specify column position in
SELECT clause instead of
whole column names

Limiting
results

LIMIT n Display only n rows

r Sorting values – The query results can be sorted along a given set of columns using the
following command:

SQL
... [query] ...
ORDER BY col_list

Remark: by default, the command sorts in ascending order. If we want to sort it in descending
order, the DESC command needs to be used after the column.

r Column types – In order to ensure that a column or value is of one specific data type, the
following command is used:

SQL
CAST(some_col_or_value AS data_type)

where data_type is one of the following:

Data type Description Example

INT Integer 2

DOUBLE Numerical value 2.0

STRING
String ’teddy bear’

VARCHAR

DATE Date ’2020-01-01’

TIMESTAMP Timestamp ’2020-01-01 00:00:00.000’

Remark: if the column contains data of different types, the TRY_CAST() command will convert
unknown types to NULL instead of throwing an error.

r Column manipulation – The main functions used to manipulate columns are described in
the table below:

Category Operation Command

General
Take first non-NULL value COALESCE(col_1, col_2, ..., col_n)

Create a new column
combining existing ones CONCAT(col_1, ..., col_n)

Value Round value to n decimals ROUND(col, n)

String

Converts string column to
lower / upper case LOWER(col) / UPPER(col)

Replace occurrences of
old in col to new

REPLACE(col, old, new)

Take the substring of col,
with a given start and length

SUBSTR(col, start, length)

Remove spaces from the
left / right / both sides LTRIM(col) / RTRIM(col) / TRIM(col)

Length of the string LENGTH(col)

Date

Truncate at a given granularity
(year, month, week) DATE_TRUNC(time_dimension, col_date)

Transform date DATE_ADD(col_date, number_of_days)

r Conditional column – A column can take different values with respect to a particular set
of conditions with the CASE WHEN command as follows:

SQL
CASE WHEN some_condition THEN some_value
..................
.....WHEN some_other_condition THEN some_other_value
.....ELSE some_other_value_n END

r Combining results – The table below summarizes the main ways to combine results in
queries:

Category Command Remarks

Union
UNION Guarantees distinct rows

UNION ALL Potential newly-formed duplicates are kept

Intersection INTERSECT Keeps observations that are in all selected queries

r Common table expression – A common way of handling complex queries is to have tem-
porary result sets coming from intermediary queries, which are called common table expressions
(abbreviated CTE), that increase the readability of the overall query. It is done thanks to the
WITH ... AS ... command as follows:

SQL
WITH cte_1 AS (
SELECT ...
),
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...

cte_n AS (
SELECT ...
)

SELECT ...
FROM ...

Table manipulation

r Table creation – The creation of a table is done as follows:

SQL
CREATE [table_type] TABLE [creation_type] table_name(
..col_1 data_type_1,
...................,
..col_n data_type_n
)
[options];

where [table_type], [creation_type] and [options] are one of the following:

Category Command Description

Table type
Blank Default table

EXTERNAL TABLE External table

Creation type
Blank Creates table and overwrites current

one if it exists

IF NOT EXISTS Only creates table if it does not exist

Options
location ’path_to_hdfs_folder’

Populate table with data
from hdfs folder

stored as data_format
Stores the table in a specific data
format, e.g. parquet, orc or avro

r Data insertion – New data can either append or overwrite already existing data in a given
table as follows:

SQL
WITH ..............................-- optional

INSERT [insert_type] table_name....-- mandatory

SELECT ...;........................-- mandatory

where [insert_type] is among the following:

Command Description

OVERWRITE Overwrites existing data

INTO Appends to existing data

r Dropping table – Tables are dropped in the following way:

SQL
DROP TABLE table_name;

r View – Instead of using a complicated query, the latter can be saved as a view which can
then be used to get the data. A view is created with the following command:

SQL
CREATE VIEW view_name AS complicated_query;

Remark: a view does not create any physical table and is instead seen as a shortcut.
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SQL cheat sheet

Basic Queries

Views

--  filter your columns 
    SELECT col1, col2, col3, ... FROM table1 
--  filter the rows
    WHERE col4 = 1 AND col5 = 2  
-- aggregate the data 
    GROUP by … 
-- limit aggregated data 
    HAVING count(*) > 1 
-- order of the results  
    ORDER BY col2

Useful keywords for SELECTS:

DISTINCT - return unique results 
BETWEEN a AND b - limit the range, the values can be  
numbers, text, or dates
LIKE - pattern search within the column text
IN (a, b, c) - check if the value is contained among given.

Data Modification
-- update specific data with the WHERE clause
    UPDATE table1 SET col1 = 1 WHERE col2 = 2
-- insert values manually
    INSERT INTO table1 (ID, FIRST_NAME, LAST_NAME)
         VALUES (1, ‘Rebel’, ‘Labs’);
-- or by using the results of a query
    INSERT INTO table1 (ID, FIRST_NAME, LAST_NAME)  
         SELECT id, last_name, first_name FROM table2

A VIEW is a virtual table, which is a result  of a query.  
They can be used to create virtual tables of complex queries. 

CREATE VIEW view1 AS
SELECT col1, col2
FROM table1
WHERE …

The Joy of JOINs

A B A B

RIGHT OUTER JOIN - all rows from table B, 
even if they do not exist in table A

INNER JOIN - fetch the results that 
exist in both tables

LEFT OUTER JOIN - all rows from table A, 
even if they do not exist in table B 

Updates on JOINed Queries
You can use JOINs in your UPDATEs
UPDATE t1 SET a = 1 
FROM table1 t1 JOIN table2 t2 ON t1.id = t2.t1_id
WHERE t1.col1 = 0 AND t2.col2 IS NULL;

NB! Use database specific syntax, it might be faster!

Semi JOINs
You can use subqueries instead of JOINs: 

SELECT col1, col2 FROM table1 WHERE id IN 
     (SELECT t1_id FROM table2 WHERE date > 
          CURRENT_TIMESTAMP)

Indexes
If you query by a column, index it! 
CREATE INDEX index1 ON table1 (col1)

Don’t forget:
Avoid overlapping indexes
Avoid indexing on too many columns
Indexes can speed up DELETE and UPDATE operations

Reporting
Use aggregation functions

COUNT - return the number of rows 
SUM - cumulate the values
AVG - return the average for the group
MIN / MAX - smallest / largest value

Useful Utility Functions
-- convert strings to dates:
    TO_DATE (Oracle, PostgreSQL), STR_TO_DATE (MySQL) 
-- return the first non-NULL argument: 
    COALESCE (col1, col2, “default value”)
-- return current time:
    CURRENT_TIMESTAMP
-- compute set operations on two result sets 
    SELECT col1, col2 FROM table1
    UNION / EXCEPT / INTERSECT
    SELECT col3, col4 FROM table2;

Union -	   returns data from both queries
Except -	   rows from the first query that are not present

  in the second query
Intersect - rows that are returned from both queries

https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/xrebel/
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> Why use Tableau?

> Tableau Versions

Learn Data Skills Online at www.DataCamp.com

> Getting started with Tableau

> Visualizing Your First Dataset

> Creating dashboards with Tableau

The Canvas

Upload a dataset to Tableau

�� Launch Tablea�
�� In the Connect section, under To a File, press on the file format of your choice�
�� For selecting an Excel file, select .xlsx or .xlsx

Creating your first visualization 

�� Once your file is uploaded, open a Worksheet and click on the Data pane on the left-hand sid�
�� Drag and drop at least one field into the      Columns section, and one field into the      Rows section at the top 

of the canva�
�� To add more detail, drag and drop a dimension into the Marks card (e.g. drag a dimension over the color square 

in the marks card to color visualization components by that dimension�
�� To a summary insight like a trendline, click on the Analytics pane and drag the trend line into your visualization�
�� You can change the type of visualization for your data by clicking on the Show Me button on the top right

Dashboards are an excellent way to consolidate visualizations and present data to a variety of stakeholders. Here is a 
step by step process you can follow to create a dashboard.

When working with Tableau, you will work with Workbooks. Workbooks contain sheets, dashboards, and stories. 
Similar to Microsoft Excel, a Workbook can contain multiple sheets. A sheet can be any of the following and can be 
accessed on the bottom left of a workbook


Worksheet
A worksheet is a single 
view in a workbook. You 
can add shelves, cards, 
legends, visualizations, 
and more in a worksheet


Dashboard
A collection of multiple 
worksheets used to 
display multiple views 
simultaneously


story
A story is a collection of 
multiple dashboards and/
or sheets that describe a 
data story


There are two main versions of Tableau 

Tableau  Public
A free version of Tableau that lets you connect to limited 
data sources, create visualizations and dashboards, and 
publish dashboards online


Tableau  Desktop

A paid version of tableau which lets you connect to 
all types of data sources, allows you to save work 
locally, and unlimited data sizes


> Data Visualizations in Tableau
Tableau provides a wide range of data visualizations to use. Here is a list of the most useful visualizations you 
have in Tableau

�� Launch Tablea�

�� In the Connect section under To A File, press on your desired file typ�
�� Select your fil�
�� Click the       New Sheet at the bottom to create a new shee�

�� Create a visualization in the sheet by following the steps in the previous sections of this cheat shee�

�� Repeat steps 4 and 5 untill you have created all the visualizations you want to include in your dashboar�

�� Click the      New Dashboard at the bottom of the scree�

�� On the left-hand side, you will see all your created sheets. Drag sheets into the dashboar�

�� Adjust the layout of your sheets by dragging and dropping your visualizations


> Creating stories with Tableau
A story is a collection of multiple dashboards and/or sheets that describe a data story

�� Click the       New Story at the bottom of the scree�

�� Change the size of the story to the desired size in the bottom left-hand corner of the screen under Siz�
�� Edit the title of the story by renaming the story. To do this, right-click on the story sheet at the bottom 

and press Renam�
�� A story is made of story points, which lets you cycle through different visualizations and dashboard�
�� To begin adding to the story, add a story point from the left-hand side. You can add a blank story poin�

��  To add a summary text to the story, click Add a caption and summarize the story poin�

�� Add as many story points as you would like to finalize your data story


Bar Charts: Horizontal bars used for comparing specific values across categories (e.g. sales by region)

Stacked Bar Chart: Used to show categorical data within a bar chart (e.g., sales by region and department)


Side-by-Side Bar Chart: Used to compare values across categories in a bar chart format (e.g., sales by 
region comparing product types)


Line Charts: Used for looking at a numeric value over time (e.g., revenue over time)


Scatter Plot: Used to identify patterns between two continuous variables (e.g., profit vs. sales volume)


The canvas is where you’ll create data visualizations

Histogram: Used to show a distribution of data (e.g., Distribution of monthly revenue)


Box-and-Whisker Plot: Used to compare distributions between categorical variables (e.g., distribution of 
revenue by region)


Heat Map: Used to visualize data in rows and columns as colors (e.g., revenue by marketing channel)


Highlight Table: Used to show data values with conditional color formatting (e.g., site-traffic by marketing 
channel and year)


Symbol Map: Used to show geographical data (e.g., Market size opportunity by state)


Map: Used to show geographical data with color formatting (e.g., Covid cases by state)


Treemap: Used to show hierarchical data (e.g., Show how much revenue subdivisions generate relative to 
the whole department within an organization)


Dual Combination: Used to show two visualizations within the same visualization (e.g., profit for a store each 
month as a bar chart with inventory over time as a line chart)


What is Tableau?
Tableau is a business intelligence tool that allows you to 
effectively report insights through easy-to-use 
customizable visualizations and dashboards

Easy to use—no coding 
involved

Integrates seamlessly with 
any data source

Fast and can handle large 
datasets

Tableau Basics Cheat Sheet

Tableau for Business Intelligence

Learn Tableau online at www.DataCamp.com

In the sidebar, you’ll find useful panes for working with dat�

�� Data: The data pane on the left-hand side contains all of the fields in the currently selected data sourc�
�� Analytics: The analytics pane on the left-hand side lets you add useful insights like trend lines, error bars, 

and other useful summaries to visualizations



When opening a worksheet, you will work with a variety of tools and interfaces

Tableau provides a deep ability to filter, format, aggregate, customize, and highlight specific parts of your data 
visualizations

The Sidebar

Tableau Data Definitions

>

>

The Anatomy of a Worksheet

Customizing Visualizations with Tableau

When working with data in Tableau, there are multiple definitions to be mindful o�

�� Fields: Fields are all of the different columns or values in a data source or that are calculated in the 
workbook. They show up in the data pane and can either be dimension or measure field�

�� Dimensions: A dimension is a type of field that contains qualitative values (e.g. locations, names, and 
departments). Dimensions dictate the amount of granularity in visualizations and help reveal nuanced details 
in the data


1. Tableau Canvas: The canvas takes up most of the screen on Tableau and is where you can add visualizations

2. Rows and columns:       Rows and      columns dictate how the data is displayed in the canvas. When dimensions 
are placed, they create headers for the rows or columns while measures add quantitative values  

3. Marks card: The marks card allows users to add visual details such as color, size, labels, etc. to rows and columns. 
This is done by dragging fields from the data pane into the marks card  


�� Once you’ve created a visual, click and drag your mouse over the specific portion you want to highlight

Filtering data with highlights

�� Right-click on a measure field in the Data pan�
�� Go down to Default properties, Aggregation, and select the aggregation you would like to use 

�� In the Format menu on the top ribbon, press on Select Workbook. This will replace the Data pane and 
allow you to make formatting decisions for the Workboo�

�� From here, select the font, font size, and color

�� Create a visualization by dragging fields into the      Rows and       Columns section at the top of the scree�
�� Drag dimensions into the Marks field, specifically into the Color squar�
�� To change from the default colors, go to the upper-right corner of the color legend and select Edit Colors. This 

will bring up a dialog that allows you to select a different palette

Aggregating data

Changing colors

When data is dragged into the Rows and Columns on a sheet, it is aggregated based on the dimensions in the sheet. 
This is typically a summed value. The default aggregation can be changed using the steps below:

Color is a critical component of visualizations. It draws attention to details. Attention is the most important 
component of strong storytelling. Colors in a graph can be set using the marks card.

Changing fonts

Fonts can help with the aesthetic of the visualization or help with consistent branding. To change the workbook’s font, 
use the following steps

Stories examples in Tableau

Dashboard examples in Tableau

2. Once you let go, you will have the option to      Keep Only or      Exclude the data
3. Open the Data pane on the side bar. Then, you can drag-and-drop a field into the fitlers card just to the 
left of the pane. 

�� Open the Data pane on the left-hand-sid�
�� Drag-and-drop a field you want to filter on and add it to the Filters car�
�� Fill out in the modal how you would like your visuals to be filtered on the data

Filtering data with filters

3. Measures: A measure is a type of field that contains quantitative values (e.g. revenue, costs, and 
market sizes).  When dragged into a view, this data is aggregated, which is determined by the 
dimensions in the view

4. Data types: Every field has a data type which is determined by the type of information it contains. 
The available data types in Tableau include text, date values, date & time values, numerical values, 
boolean values, geographical values, and cluster groups



• Relational Operators

• Logical Operators

T a b l e a u - D e s k t o p   

C H E AT  S H E E T
Data Sources

File Systems CSV, Excel, etc.

Relational Systems Oracle, Sql Server, DB2, etc.

Cloud Systems Windows Azure, Google BigQuery, etc.

Other Sources ODBC

• Extraction of data is done by following 

MeŶu → Data → Eǆtract Data.
• Applying Extract Filters to create subset of data

• To add more data for an already created extract 

Data → Eǆtract → AppeŶd Data froŵ File
• Extract History

Menu - Data → Eǆtract HistorǇ

Data Extract

• Creating a Join

• Editing a Join Type

• Editing Join Fields

Data Joining

• Preparing Data for Blending

• Adding Secondary Data Source

• Blending the Data

Data Blending

• Fixed LOD , Include LOD and Exclude LOD

LOD Expressions

• Computed Sorting: Directly applied on an axis using the sort 

dialog button.

• Manual Sorting: Rearrange the order of dimension fields by 

dragging them next to each other.

Sorting

• General Operators

• Arithmetic Operators

Operators

• Relational Operators

• Logical Operators

Data Sources

Types Work

Multiple Values (List) Select one or more values in a list.

Multiple Values (Dropdown) Select one or more values in a drop-down list.

Multiple Values (Custom List) Search and select one or more values.

Single Value (Slider) Drag a horizontal slider to select a single value.

Wildcard Match Select values containing the specified characters.

Tableau Charts

Type Description

Text Table (Crosstab) To see your data in rows and columns.

Heat Map Just like Crosstab, but it uses size and color as visual cues to describe the data.

Highlight Table Just like Excel table, but the cells here are colored.

Symbol Map Visualize and highlight geographical data.

Filled Map Color filled geographical data visualization.

Pie Chart Represents data as slices of a circle with different sizes and colors.

Horizontal Bar Chart Represents data in horizontal bars, visually digestible.

Stacked Bar Chart Visualize data of a category having sub-categories.

Side-by-Side Bar Chart Side by side comparison of data, vertical representation.

Treemap Similar to a heat map, but the boxes are grouped by items that are close in hierarchy.

Circle View Shows the different values that are within the categories.

Side-by-Side Circle View fields) Combination of Circle view and Side-by-Side Bar Chart

Line Chart (Continuous) Several number of lines in the view to show continuous flow of data, must have a date.

Line Chart (Discrete) This allows slicing and dicing of the graph, graph not continuous.

Dual Line Chart Comparing two measures over a period.

Scatter Plot Scatter plot shows many points scattered in the Cartesian plane

Histogram A histogram represents the frequencies of values of a variable bucketed into ranges

Gantt Chart It illustrates a project schedule.

Bullet Graph Two bars drawn upon one another to indicate their individual values at the same position in the graph

Waterfall Chart It shows where a value starts, ends and how it gets there incrementally

Types Work

Filter Dimensions Applied on the dimension fields.

Filter Measures Applied on the measure fields.

Filter Dates Applied on the date fields.

Single Value (List) Select one value at a time in a list.

Single Value (Dropdown) Select a single value in a drop-down list.

FURTHERMORE: 

Tableau Training and Certification - Tableau 10 Desktop Course

https://intellipaat.com/
https://intellipaat.com/tableau-training/


Connect to data sourceBuild data viewsEnhance data viewsWorksheetsCreate and organize dashboardsStory 
Telling

T a b l e a u - D e s k t o p  

S h o r t c u t s  &

Te r m i n o l o g i e s  

C H E AT  S H E E T

FURTHERMORE: 
Tableau Training and Certification - Tableau 10 Desktop Course

A powerful Data visualization and Business intelligence tool with a 

strong and intuitive interface. No coding knowledge or experience 

needed to work with Tableau.

What is Tableau?

File Short Cuts:

Data Short Cuts:

File Operation

ALT+F4 Closes the current workbook

ALT+F+E+I Export to image

ALT+F+E+P Export to packaged workbook

CTRL+N New workbook

CTRL+O Open file

CTRL+P Print

CTRL+S Save file

Data Operation

ALT+D+A Automatic updates

ALT+D+D Connect to data

CTRL+D Connect to data source

ALT+D+C+D Duplicate data connection

ALT+D+A Extract

ALT+D+C+P Properties of data connection

ALT+D+R Refresh data

F5 Refreshes the data source

F9 Run query

ALT+D+U Toggle use extract

F10 Toggles automatic updates on and off

ALT+D+P+D Update dashboard

ALT+D+P+Q Update quick filters

ALT+D+P+W Update worksheet

File Short Cuts:

Analysis Operation

ALT+A+A Aggregate measures

ALT+A+C Create calculated field

ALT+A+B Describe trend model

ALT+A+U Edit calculated field

ALT+A+L Edit trend lines

ALT+A+F Filter

CTRL+1 Show me!

ALT+A+S Sort

ALT+A+M+F Stack marks off

ALT+A+M+O Stack marks on

Get started with Tableau

• Tableau is BI software

• Allows users to connect to data, visualize data and create 

interactive and sharable dashboards.

Tableau Terminologies

Alias: Refers to a field or to a dimension member

Bin: User-defined grouping of measures in the data source

Bookmark: .tbm file in the Bookmarks folder contains a single worksheet of the Tableau repository

Calculated Field: New field created by using a formula to modify the existing fields in data source

Crosstab: Text table view to display the numbers associated with dimension members

Dashboard: Use dashboards to compare and monitor a variety of data simultaneously

Data Pane: Displays the fields (divided into dimensions and measures) of the data sources to which Tableau is 

connected

Data Source Page: A page to set up your data source consists of − left pane, join area, preview area, and metadata 

area

Dimension: Categorical data field holds discrete data such as hierarchies and members that cannot be aggregated

Extract: A saved subset of a data source that can be used to improve performance and analyze offline. 

Filters Shelf: Used to exclude data from a view by filtering it using measures and dimensions

Format Pane: Contains formatting settings that control the entire worksheet, as well as individual fields in the view

Level of Detail (LOD) Expression: A syntax that supports aggregation at dimensionalities other than the view level. 

Marks: A part of the view that visually represents one or more rows in a data source. A mark can be, for example, a 

bar, line, or square. You can control the type, color, and size of marks

Marks Card: A card to the left of the view, where you can drag fields to control mark properties such as type, color, 

size, shape, label, tooltip, and detail

Pages Shelf: Used to split a view into a sequence of pages based on the members and values in a discrete or 

continuous field

Rows Shelf: Used to create the rows of a data table, also accepts any number of dimensions and measures

Worksheet: A sheet to build views of the data

Workbook: Contains one or more worksheets

Design Flow

Connect to Data Source   Build Data Views   Enhance Data Views   Worksheets    Create and Organize Dashboards    Story Telling

https://intellipaat.com/
https://intellipaat.com/tableau-training/
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> Why use Power BI?

> Power BI Components

Learn Data Skills Online at www.DataCamp.com

> Getting started with Power BI

> Visualizing your first dataset

> Data Visualizations in Power BI

Upload datasets into Power BI

Create relationships in Power BI

Create your first visualization

Aggregating data

Open the Power Query Editor

Using the Power Query Editor� Underneath the Home tab, click on Get Dat�

� Choose any of your datasets and double clic�
� Click on Load if not prior data needs processin�
� If you need to transform the data, click Transform which will launch Power Query. Keep reading this cheat sheet for 

how to apply transformations in Power Query�
� Inspect your data by clicking on the       Data View

Power BI provides a wide range of data visualizations. Here is a list of the most useful visualizations you have in Power BI

Table: Grid used to display data in a logical series of rows and columns (e.g. all products with sold items)

Cards: Used for displaying a single fact or single data point (e.g. total sales)

Maps:  Used to map categorical and quantitative information to spatial locations (e.g. sales per state)

Donut Chart: Similar to pie charts; used to show the proportion of sectors to a whole (e.g. market share) 

Pie Chart: Circle divided into slices representing a category's proportion of the whole (e.g. market share)

Treemaps:  Used to visualize categories with colored rectangles, sized with respect to their value (e.g. product 
category based on sales)

Combo Chart: Combines a column chart and a line chart (e.g. actual sales performance vs target) 

Scatter: Displays one set of numerical data along the horizontal axis and another set along the vertical axis (e.g. 
relation age and loan)

Area Chart: Based on the line chart with the difference that the area between the axis and line is filled in (e.g. 
sales by month)

Line Charts: Used for looking at a numeric value over time (e.g. revenue over time)

Column Charts: Vertical columns for comparing specific values across categories 

Bar Charts: Horizontal bars used for comparing specific values across categories (e.g. sales by region)

Sales Performance

SalesPersonID

Employee Database

EmployeeID

� If you have different datasets you want to connect. First, upload them into 
Power B�

� Click on the       Model View from the left-hand pan�
� Connect key columns from different datasets by dragging one to another 

(e.g., EmployeeID to e.g., SalespersonID)

� Click on the       Report View and go to the Visualizations pane on the right-hand sid�
� Select the type of visualization you would like to plot your data on. Keep reading this cheat to learn different 

visualizations available in Power BI�
� Under the Field pane on the right-hand side, drag the variables of your choice into Values or Axis.



Values let you visualize aggregate measures (e.g. Total Revenue)

Axis let you visualize categories  (e.g. Sales Person)

Power BI sums numerical fields when visualizing them under Values. However, you can choose different aggregation�

� Select the visualization you just create�
� Go to the Visualizations section on the right-hand sid�
� Go to Values—the visualized column should be there
�  On the selected column—click on the dropdown arrow       and change the aggregation (i.e., AVERAGE, MAX, 

COUNT, etc..)

While loading dat�
� Underneath the Home tab, click on Get Dat�

� Choose any of your datasets and double clic�
� Click on Transform Data 



When data is already loade�
� Go to the       Data Vie�

� Under Queries in the Home tab of the ribbon, click on Transform Data drop-down, then on the Transform Data

button

Appending datasets

You can append one dataset to anothe�

� Click on Append Queries under the Home tab under the Combine grou�
� Select to append either Two tables or Three or more table�

� Add tables to append under the provided section in the same window



Merge Queries

You can use merge tables based on a related column�

� Click on Merge Queries under the Home tab under the Combine grou�

� Select the first table and the second table you would like to merge�
� Select the columns you would like to join the tables on by clicking on the column from the first dataset, and from 

the second datase�
� Select the Join Kind that suits your operation:


Left outer Right outer Full outer Inner Left anti Right anti

� Click on Ok—new columns will be added to your current table 



Data profiling

Data Profiling is a feature in Power Query that provides intuitive information about your dat�

� Click on the View tab in the Query ribbo�
� In the Data Preview tab—tick the options you want to visualiz�
� Tick Column Quality to see the amount of missing dat�
� Tick Column Distribution to see the statistical distribution under every colum�
� Tick Column Profile to see summary statistics and more detailed frequency information of columns

Removing rows

You can remove rows dependent on their location, and propertie�
� Click on the Home tab in the Query ribbo�
� Click on Remove Rows in the Reduce Rows group�
� Choose which option to remove, whether Remove Top Rows, Remove Bottom Rows, etc.�
� Choose the number of rows to remov�
� You can undo your action by removing it from the Applied Steps list on the right-hand side



Adding a new column

You can create new columns based on existing or new dat�
� Click on the Add Column tab in the Query ribbo�
� Click on Custom Column in the General grou�
� Name your new column by using the New Column Name optio�
� Define the new column formula under the custom column formula using the available data



Replace values

You can replace one value with another value wherever that value is found in a colum�
� In the Power Query Editor, select the cell or column you want to replac�
� Click on the column or value, and click on Replace Values under the Home tab under the Transform grou�
� Fill the Value to Find and Replace With fields to complete your operation

There are three main views in Power BI

report  view

This view is the default 
view, where you can 
visualize data and create 
reports

data  view

This view lets you examine 
datasets associated with 
your reports

model  view

This view helps you 
establish different 
relationships between 
datasets

There are three components to Power BI—each of them serving different purposes

Power  BI  Desktop

Free desktop application that 
provides data analysis and 
creation tools.

Power  BI  service

Cloud-based version of Power BI 
with report editing and publishing 
features.

Power  BI  mob ile

A mobile app of Power BI, which 
allows you to author, view, and 
share reports on the go. 

> Power Query Editor in Power BI
Power Query is Microsoft’s data transformation and data preparation engine. It is part of Power BI Desktop, and lets 
you connect to one or many data sources, shape and transform data to meet your needs, and load it into Power BI. 

What is Power BI?
Power BI is a business intelligence tool that allows you 
to effectively report insights through easy-to-use 
customizable visualizations and dashboards.



Easy to use—no coding 
involved

Integrates seamlessly with 
any data source

Fast and can handle large 
datasets

> DAX Expressions
Data Analysis Expressions (DAX) is a calculation language used in Power BI that lets you create calculations and 
perform data analysis. It is used to create calculated columns, measures, and custom tables. DAX functions are 
predefined formulas that perform calculations on specific values called arguments. 

Sample data

Throughout this section, we’ll use the columns listed in this sample table of `sales_data`

deal_size

1,000

3,000

2,300

sales_person

Maria Shuttleworth

Nuno Rocha

Terence Mickey

date

30-03-2022

29-03-2022

13-04-2022

customer_name

Acme Inc.

Spotflix

DataChamp

Simple aggregation�
� SUM(<column>) adds all the numbers in a colum�
� AVERAGE(<column>) returns the average (arithmetic mean) of all numbers in a colum�
� MEDIAN(<column>) returns the median of numbers in a colum�
� MIN/MAX(<column>) returns the smallest/biggest value in a colum�
� COUNT(<column>) counts the number of cells in a column that contain non-blank value�
� DISTINCTCOUNT(<column>) counts the number of distinct values in a column.

EXAMPLE�
� Sum of all deals — SUM(‘sales_data’[deal_size]�
� Average deal size — AVERAGE(‘sales_data’[deal_size]�
� Distinct number of customers — DISTINCTCOUNT(‘sales_data’[customer_name])

Logical function�
� IF(<logical_test>, <value_if_true>[, <value_if_false>]) check the result of an expression and 

create conditional results

EXAMPLE�
� Create a column called large_deal that returns “Yes” if deal_size is bigger than 2,000 and “No” otherwise 

large_deal = IF( ‘sales_data’[deal_size] > 2000, “Yes”, “No”)

Text Function�
� LEFT(<text>, <num_chars>) returns the specified number of characters from the start of a tex�
� LOWER(<text>) converts a text string to all lowercase letter�
� UPPER (<text>) converts a text string to all uppercase letter�
� REPLACE(<old_text>, <start_num>, <num_chars>, <new_text>) replaces part of a text string with a 

different text string.

EXAMPLE�
� Change column customer_name be only lower case  
customer_name = LOWER(‘sales_data’[customer_name])

Date and time function�
� CALENDAR(<start date>, <end date>) generates a column of continuous sets of date�
� DATE(<year>, <month>, <day>) returns the specified date in the datetime forma�
� WEEKDAY(<date>, <return_type>) returns 1-7 corresponding to the day of the week of a date (return_type 

indicates week start and end (1: Sunday-Saturday, 2:  Monday-Sunday)

EXAMPLE�
� Return the day of week of each deal 

week_day = WEEKDAY(‘sales_data’[date], 2)

Power BI Cheat Sheet

Power BI for Business Intelligence

Learn Power BI online at www.DataCamp.com
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OVERVIEW

What is Power BI?

Components

Built-in and additional 
languages

Power Query DAX Drill Down License

Dataflow

Visualization

Tooltip/Custom Tooltip

Drill-through

Bookmarks

Administration

Themes

Built-in languages
› M/Query Language—Lets you transform data 
in Power Query.
› DAX (Data Analysis Expressions)—Lets you define custom 
calculated tables, columns, and measures in Power BI Desktop.

"Both languages are natively available in Power BI, 
which eliminates the need to install anything."

Additional languages
› Python—Lets you fetch data and create visuals. 
Requires installation of the Python language on your 
computer and enabling Python scripting.
› R—Lets you fetch and transform data and create visuals. 
Requires installation of the R language on your computer 
and enabling R scripting.

› Power BI Desktop—Desktop application
› Report—Multi-page canvas visible to end users. It serves 

for the placement of visuals, buttons, images, slicers, etc.
› Data—Preview pane for data loaded into a model.
› Model—Editable scheme of relationships between tables in 

a model. Pages can be used in a model for easier navigation.

› Power Query—A tool for connecting, transforming, 
and combining data.

"Apart from the standard version, there is 
also a version for Report Server."

› Power BI Service—A cloud service enabling access 
to, and sharing and administration of, output data.
› Workspace—There are three types of workspaces: 
Personal, Team, and Develop a template app. They serve 
as storage and enable controlled access to output data.

› Dashboard—A space consisting of tiles in which visuals and 
report pages are stored.*

› Report—A report of pages containing visuals.*
› Worksheet—A published Excel worksheet. Can be used 

as a tile on a dashboard.
› Dataset—A published sequence for fetching and 

transforming data from Power BI Desktop.
› Dataflow—Online Power Query representing 

a special dataset outside of Power BI Desktop.*
› Application—A single location combining one 

or more reports or dashboards.*
› Admin portal—Administration portal that lets you configure 

capacities, permissions, and capabilities for individual users 
and workspaces. 
*Can be created and edited in the Power BI Service 
environment.

› Data Gateway—On-premises data gateway that lets you 
transport data from an internal network or a custom device 
to the Power BI Service.
› Power BI Mobile—Mobile app for viewing reports. Mobile 
view is applied, if it exists, otherwise the desktop view is used.
› Report Server—On-premises version of Power BI Service.
› Report Builder—A tool for creating page reports.

"It is Microsoft’s Self-Service Business 
Intelligence tool for processing and 

analyzing data."

Per-user License
› Free—Can be obtained for any Microsoft work or school 
email account. Intended 
for personal use. Users with this license can only 
use the personal workspace. They cannot share 
or consume shared content.

"If it is not available in Premium workspace"

› Pro—It is associated with a work/school account priced at 
€8.40 per month or it is included in the E5 license. Intended for 
team collaboration. Let's users access team workspaces, 
consume shared content, and use apps.
› Premium per User – Includes all Power BI Pro license 
capabilities, and adds features such as paginated reports, AI,
greater frequency for refresh rate, XMLA endpoint and other 
capabilities that are only available to Premium subscribers.
Per-tenant License
› Premium—Premium is set 
up for individual workspaces. 0 to N workspaces 
can be used with a single version of this license. It provides 
dedicated server computing power based 
on license type: P1, P2, P3, P4*, P5*. It offers more space for 
datasets, extended metrics for individual workspaces, 
managed consumption of dedicated capacity, linking of Azure 
AI features with datasets, and access for users with Free
licenses to shared 
content. Prices start at €4,212.30.
*Only available upon special request. Intended for models larger than 
100GB.
› Embedded—Supports embedding dashboards and reports 
in custom apps. 
› Report Server—Included in Premium or SQL Server Enterprise licenses.

› Tooltip —A default detail preview pane which 
appears above a visual when you hover over its values.

Drill up to a higher-level hierarchy

Drill down to a specific field

Drill down to the next level in the hierarchy

Expand next-level hierarchy

The Visual that supports the embedding of hierarchies 
enables drilling down to the embedded hierarchy’s 
individual levels using the following symbols:

› Custom Tooltip —A custom tooltip is a custom-
designed report page identified as descriptive. 
When you hover over visual, a page appears 
with content filtered based on criteria specified 
by the value in the visual.

Drill-through lets you pass from a data overview 
visual to a page with specific details. The target 
page is displayed with all the applied filters affecting 
the value from which the drill-through originated.

Bookmarks capture the currently configured view or a 
report page visual. Later, you can go back to that state 
by selecting the saved bookmark. Setting options:
› Data—Stores filters, applied sort order in visuals and slicers. 

By selecting the bookmark, you can re-apply the corresponding 
settings.
› Display—Stores the state of the display for visuals and 

report elements (buttons, images, etc.). By selecting the 
bookmark, you can go back to the previously stored state 
of the display.
› Current page—Stores the currently displayed page. By 

selecting the bookmark, you can go back the to stored page.

Works with data fetched from data sources using 
connectors. This data is then processed at the Power 
BI app level and stored to an in-memory database in 
the program background. This means that data is not 
processed at the source level. The basic unit in Power 
Query is query, which means one sequence 
consisting of steps. A step is a data command that 
dictates what should happen to the data when it is 
loaded into Power BI. The basic definition of each 
step is based on its use:

› Connecting data—Each query begins with a function that 
provides data for the subsequent steps. E.g., data can be 
loaded from Excel, SQL database, SharePoint etc. Connection 
steps can also be used later. 

› Transforming data—Steps that modify the structure of the 
data. These steps include features such as Pivot Column, 
converting columns to rows, grouping data, splitting columns, 
removing columns, etc. Transformation steps are necessary in 
order to clean data from not entirely clean data sources. 

› Combining data—Data split into multiple source files needs 
to be combined so that it can be analyzed in bulk. Functions 
include merging queries and appending queries.

› Merge queries—This function merges queries based on the selected 
key. The primary query then contains a column which can be used to 
extract data from a secondary query. Supports typical join types:

› Append query—Places the resulting data from one or more selected 
queries under the primary query. In this case, data is placed in columns 
with names that are an exact match. Non-matching columns form new 
columns with a unique name in the primary query.

› Custom function—A query intended to apply a pre-defined sequence of 
steps so that the author does not need to create them repeatedly. The 
custom function can also accept input data (values, sheets, etc.) to be used 
in the sequence.
› Parameter—Values independent of datasets. These values can then be 
used in queries. Values enable the quick editing of a model because they 
can be changed in the Power BI Service environment.

The basic unit is a table or Entity consisting of 
columns or Fields. Just like Queries in Power 
Query, Entities in Dataflows consist of sequences 
of steps. The result of such steps is stored in native 
Azure Data Lake Gen 2.

"You can connect a custom Data Lake 
where the data will be stored."

There are three types of entities:
›  Standard entity—It only works with data fetched directly 

from a data source or with data from non-stored entities    
within the same dataflow.

Computed entity*—It uses data from another stored entity 
within the same dataflow.

›  Linked entity*—Uses data from an entity located in another 
dataflow. If data in the original entity is updated, 
the new data is directly passed to all 
linked entities.

*Can only be used in a dedicated Power BI Premium workspace.

"It supports custom functions as well as parameters."

External Tools
They simplify the use of Power BI and extend the 
capabilities offered in Power BI. These tools are 
mostly developed by the community. Recommended 
external tools:
› Tabular Editor

› DAX studio

› ALM Toolkit

› VertiPaq Analyzer

Language developed for data analysis. It enables the 
creation of the following objects using expressions:

› Measures
› Calculated Columns 
› Calculated Tables 

Each expression starts with the = sign, followed 
by links to tables/columns/functions/measures and 
operators. The following operators are supported: 

› Arithmetic { + , - , / , * , ^ }
› Comparison { = , == , > , < , >= , <= , <> }
› Text concatenation { & , && , II , IN }
› Precedence { ( , ) }

Operators and functions require that all 
values/columns used are of the same data type 
or of a type that can be freely converted; such 
as a date or a number.

Visualizations or visuals let you present data in 
various graphical forms, from graphs to tables, 
maps, and values. Some visuals are linked to other 
services outside Power BI, such as Power Apps.

In addition to basic visuals, Power BI supports 
creating custom visuals. Custom visuals can be 
added using a file import or from a free Marketplace 
offering certified and non-certified visuals. 
Certification is optional, but it verifies whether, 
among other things, a visual accesses external 
services and resources.

Serves as a single location for configuring all native 
graphical settings for visuals and pages. 

By default, you can choose from 19 predefined 
themes. Custom themes can be added.

A custom theme can be applied in two different ways:
› Modification of an existing theme—A native window that 

lets you modify a theme directly in the Power BI environment.
› Importing a JSON file—Any file you create only defines the 

formatting that should change. Everything else remains the 
same. The advantage of this approach is that you can 
customize any single visual.

"The resulting theme can be exported in the JSON format and 
used in any report without the need to create a theme from 
scratch."

› Use metrics—Usage metrics let you monitor Power BI usage 
for your organization.
› Users—The Users tab provides a link to the Microsoft 365 admin center.
› Audit logs—The Audit logs tab provides a link to the Security & 
Compliance center.
› Tenant settings—Tenant settings enable fine-grained control over 
features made available to your organization. It controls which features 
will be enabled or disabled and for which users and groups.
› Capacity settings—The Power BI Premium tab enables you to 
manage any Power BI Premium and Embedded capacities.
› Embed codes—You can view the embed codes that are generated for 
your tenant to share reports publicly. You can also revoke or delete codes.
› Organization visuals—You can control which type of Power BI visuals 
users can access across the organization.
› Azure connections—You can control workspace-level storage 
permissions for Azure Data Lake Gen 2.
› Workspaces—You can view the workspaces that exist in your tenant 
on the Workspaces tab.
› Custom branding—You can customize the look of Power BI for your 
whole organization.
› Protection metrics—The report shows how sensitivity labels help 
protect your content.
› Featured content—You can manage all the content promoted in the 
Featured section.
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DAX

What is DAX?

Introduction to DAX

Operators

Calculation contexts

“ Data Analysis Expressions (DAX) is a 
library of functions and operators 
combined to create formulas and 

expressions “

Calcuation Groups Hierarchy

› Where to find
› Power BI, Power Pivot for Excel, Microsoft Analysis Services

› Purpose
› DAX was created to enumerate formulas across the data 

model, where the data is stored in the form of tables, which 
can be linked together through the sessions. They may have a 
cardinality of either 1: 1, 1: N, or M: N and your direction, 
which decides which table filters which. These sessions are 
either active or inactive. The active session is automatically 
and participates in the calculation. The inactive is involved in 
this when it is activated, for example, by a function

USERELATIONSHIP()

Basic concepts
› Constructs and their notation
› Table – ‘Table‘
› Column – [Column] -> ‘Table‘[Column]
› Measure – [NameOfMeasure]

› Comments
› Single-line (CTRL + ´) – // or --
› Multi-line – /* */

› Data types
› INTEGER
› DECIMAL
› CURRENCY
› DATETIME
› BOOLEAN
› STRING
› VARIANT (not implemented in Power BI)
› BINARY

› DAX can work very well with some types as well combined as 
if it were the same type. If so, for example, the DATETIME and 
INTEGER data types are supported operator "+" then it is 
possible to use them together. 

Example: DATETIME ( [Date] ) + INTEGER ( 1 ) = DATETIME ( [Date] + 1)

› Arithmetic { + , - , / , * , ^ }
› Comparative { = , == ,  > , < , >= , <= , <> }
› Joining text { & }
› Logic { && , II , IN, NOT }
› Prioritization  { ( , ) }

Calculated Columns
› They behave like any other column in the table. 
Instead of coming from a data source, they are 
created through a DAX expression evaluated based on 
the current context line, and we cannot get values ​​of 
another row directly.
› Import mode. Their evaluation and storage is in progress 
when processing the model.
› DirectQuery mode. They are evaluated at runtime, which may 
slow down the model.

Profit = Trades[Quantity]*Trades[UnitPrice]

Measures
› They do not compare row-based calculations, but they 

perform aggregation of row-based values input contexts that 
the environment passes to the calculation. Because of this, 
there can be no pre-counting result. It must be evaluated 
only at the moment when Measure is called.

› The condition is that they must always be linked to the table 
to store their code, which is possible at any time alter. 
Because their calculation is no longer directly dependent, it is 
common practice to have one separate Measure Table, which 
groups all Measures into myself. For clarity, they are 
therefore further divided into folders.

Example of Measure:

SalesVolume = SUM (Trades[Quantity])

› Variables in DAX calculations allow avoiding 
repeated recalculations of the same procedure. 
Which might look like this:

NumberSort = 
VAR _selectedNumber =

SELECTEDVALUE( Table[Number] )
RETURN
IF( _selectedNumber < 4, _selectedNumber, 5 )

› Their declaration uses the word VAR after followed 
by the name "=" and the expression. The first using 
the word VAR creates a section for DAX where 
possible declare such variables 1 to X. Individual 
variables always require a comment for their 
declaration VAR before setting the name. To end this 
section, the word RETURN that it defines is a 
necessary return point for calculations.

› Variables are local only.
› If there is a variable in the formula that is not used 

to get the result, this variable does not evaluate. 
(Lazy Evaluation)

› Evaluation of variables is performed based on 
evaluated context instead of the context in which 
the variable is used directly. Within one, The 
expression can be multiple VAR / RETURN sections 
that always serve to evaluate the currently 
evaluated context.

› They can store both the value and the whole table

Variables

Calculate type function

› All calculations are evaluated on a base basis some 
context that the environment brings to the 
calculation. (Evaluation context)
› Context Filter -
The following calculation calculates
the profit forindividual sales.

Revenue = 
SUMX( Trades,

Trades[Quantity]*
Trades[UnitPrice]
)

If I place this calculation in a table 
without a Country column, then the
result will be 5,784,491.77. With this column, we get "Total" 
the same as the previous calculation. Still, the individual 
records provide us with a FILTER context that filters in 
calculating the input the SUMX function's input. They behave 
the same way, for example, AXES in the chart.

› The filter context is can be adjusted with various functions, 
such as FILTER,ALL, ALLSELECTED 
› Row context - Unlike the previous one, this context does not 
filter the table. It is used to iterate over tables and evaluate 
values columns. They are typical, but at the same time, 
specific example calculated columns that are calculated from 
data that are valid for the table row being evaluated. In 
particular that, manual creation is not required when creating 
the line context because DAX makes it. Above the mentioned 
example with the use of SUMX also hides in itself line context. 
Because SUMX is the function for that specified, the table in 
the first argument performs an iterative pass and evaluates 
the calculation line by line. The line context is possible to use 
even nested. Or, for each row of the table, evaluates each row 
of a different table.

› CALCULATE, and CALCULATETABLE are functions that can 
programmatically set the context filter. In addition to this 
feature converts any existing line context to a context filter.
› Calculate and Calculatetable syntax:

CALCULATE / CALCULATETABLE (
<expression> [, <filter1> [, … ]]
)

› The section filter within the Calculate expression is NOT of 
type boolean but Table type. Nevertheless, boolean can be 
used as an argument.

› Example of using the calculate function in a cumulative 
calculation the sum of sales for the last 12 months:
CALCULATE (

SUM ( Trades[Quantity] ),
DATESINPERIOD( 

DateKey[Date],
MAX ( DateKey[Date] ), 
-1,
YEAR

) )

› Syntax Sugar:
› [TradeVolume](Trades[Dealer] = 1)

=
CALCULATE ( [TradeVolume], Trades[Dealer] = 1)

=
CALCULATE ( [TradeVolume], FILTER (

ALL (Trades[Dealer] ) ,
Trades[Dealer] = 1)  ) 

› They are very similar to Calculated members from MDX. In 
Power BI, it is not possible to create them directly in the 
Desktop application environment, but an External Tool 
Tabular Editor is required.

› This is a set of Calculation Items grouped according to their 
purpose and whose purpose is to prepare an expression, 
which can be used for different input measures, so it doesn‘t 
have to write the same expression multiple times. To where 
she would be, but the input measure is placed 
SELECTEDMEASURE(). 
Example:

CALCULATE ( SELECTEDMEASURE(), 
Trades[Dealer] = 1)

› From a visual point of view, the Calculation Group looks like a 
table with just two columns, "Name," "Ordinal," and rows 
that indicate the individual Calculation Items.

› In addition to facilitating the reusability of the prepared 
expressions also provide the ability to modify the output 
format of individual calculations. Within this section, “Format 
String Expression ”often uses the DAX function 
SELECTEDMEASUREFORMATSTRING(), which returns a format 
string associated with the Measures being evaluated.

Example:

VAR _selectedCurrency = SELECTEDVALUE( Trades[Currency] )
RETURN

SELECTEDMEASUREFORMATSTRING() & „ “ & _selectedCurrency

› In Power BI, they can all be evaluated pre-prepared items, or
it is possible, for
example, to use the
cross-section to define 
items that are currently
being evaluated

› Sometimes, however, it is
necessary to enable the evaluation of Calculation Items only 
for Specific Measures. In that case, it is possible to use the 
ISSELECTEDMEASURE() function, whose output is a value of type
boolean or the SELECTEDMEASURENAME() function that returns 
the name of the currently inserted measure as a string.

Conditions
› Like most languages, DAX uses the IF function. Within this 

language, it is defined by syntax:
IF ( <logical_test>, <value_if_true>[, <value_if_false>])

Where false, the branch is optional. The IF function explicitly 
evaluates only a branch that is based on the result of a logical 
test relevant.

› If both branches need to be evaluated, then there is a function 
IF.EAGER() whose syntax is the same as IF itself but
evaluates as:

VAR _value_if_true = <value_if_true>
VAR _value_if_false = <value_if_false>
RETURN
IF (<logical_test>, _value_if_true, _value_if_false)

› IF has an alternative as IFERROR. Evaluates the expression 
and return the output from the <value_if_error> branch only if 
the expression returns an error. Otherwise, it returns the 
value of the expression itself.

› DAX supports concatenation of conditions, both using 
submerged ones IF, so thanks to the SWITCH function. It 
evaluates the expression against the list values ​​and returns one 
of several possible result expressions.

› The basic building block of DAX queries is the expression 
EVALUATE followed by any expression whose output is a 
table.

Example:

EVALUATE
ALL (Trades[Dealer] )

› The EVALUATE statement can be divided into three primary 
sections. Each section has its specific purpose and its 
introductory word.
› Definition – It always starts with the word DEFINE. This section defines 
local entities such as tables, columns, variables, and measures. There can 
be one section definition for an entire query, although a query can contain 
multiple EVALUATEs
› Query – It always starts with the word EVALUATE. This section contains 
the table expression to evaluate and return as a result. 
› Result – This is a section that is optional and starts with the word ORDER 
BY. It contains the possibility to sort the result based on the inserted
inputs.

Example:

DEFINE
VAR _tax = 0.79

EVALUATE
ADDCOLUMNS(
Trades,
„AdjustedpProfit“,

( Trades[Quantity] * Trades[UnitPrice] ) * _tax
)

ORDER BY [AdjustedpProfit]

› This type of notation is used, for example, in DAX Studio 
(daxstudio.org). It is a publicly available tool that provides free 
access to query validation, code debugging, and query 
performance measurement. 
› DAX studio has the ability to connect directly to

Analysis Services, Power BI a Power Pivot for Excel

DAX Queries

Recommended sources
› Marco Russo & Alberto Ferrari

› Daxpatterns.com
› dax.guide
› The Definitive Guide to DAX

› DAX itself has no capability within the hierarchy to 
automatically convert your calculations to parent or child 
levels. Therefore, each level must Prepare Your Measures, 
which are then displayed based on the ISINSCOPE function. 
She tests which level to go just evaluating. Evaluation takes 
place from the bottom to the top level.

› The native data model used by DAX does not directly support 
its parent/child hierarchy. On the other hand, DAX contains 
functions that can convert this hierarchy to separate columns.

› PATH - It accepts two parameters, where the first parameter is the key ID 
column tables. The second parameter is the column that holds the parent 
ID of the row. The result of this function then looks like this: 1|2|3|4
Syntax: PATH( <ID_columnName>, <parent_columnName> )
› PATHITEM – Returns a specific item based on the specified position 
from the string, resulting from the PATH function. Positions are counted 
from left to right. The inverted view uses the PATHITEMREVERSE function.
Syntax: PATHITEM( <path>, <position>[, <type>] ) 
› PATHILENGTH – Returns the number of parent elements to the specified 
item in given the PATH result, including itself.
Syntax: PATHLENGTH( <path> ) 
› PATHCONTAINS – Returns true if the specified item is specified exists in 
the specified PATH path.    
Syntax: PATHCONTAINS( <path>, <item> )
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POWER QUERY

What is Power Query?

Components

Data values Custom function Syntax Sugar

› Ribbon – A ribbon containing settings and pre-built features by Power 
Query itself rewrites in M ​​language for user convenience.

› Queries – simply a named M expression. Queries can be moved into
groups

› Primitive – A primitive value is a single-part value, such as a number, 
logical, date, text, or null. A null value can be used to indicate the absence 
of any data.

› List – The list is an ordered sequence of values. M supports endless lists. 
Lists define the characters “{“ and “}“ indicate the beginning and the end of 
the list.

› Record – A record is a set of fields, where the field is a pair of which form
the name and value. The name is a text value that is in the field record 
unique. 

› Table – A table is a set of values ​​arranged in named columns and rows.
Table can be operated on as if it is a list of records, or as if it is a record of 
lists. Table[Field]` (field reference syntax for records) returns a list of values in 
that field. ̀ Table{i}` (list index access syntax) returns a record representing a 
row of the table.

› Function – A function is a value that when called using arguments creates a 
new value. Functions are written by listing the function argumets in 
parentheses, followed by the transition symbol “=>“ and the expression 
defining the function. This expression usually refers to argumets by 
name. There are also functions without argumets.

› Parameter – The parameter stores a value that can be used for 
transformations. In addition to the name of the parameter and the value it 
stores, it also has other properties that provide metadata. The undeniable 
advantage of the parameter is that it can be changed from the Power BI 
Service environment without the need for direct intervention in the data 
set. Syntax of parameter is as regular query only thing that is special is that 
the metadata follows a specific format.

› Formula Bar – Displays the currently loaded step and allows you to edit 
it.To be able to see formula bar, It has to be enabled in the ribbon menu 
inside View category.

› Query settings – Settings that include the ability to edit the name and 
description of the query. It also contains an overview of all currently applied 
steps. Applied Steps are the variables defined in a let expression and they
are represented by varaibles names.

› Data preview – A component that displays a preview of the data in the 
currently selected transformation step.

› Status bar – This is the bar located at the bottom of the screen. The row 
contains information about the approximate state of the rows, columns, 
and time the data was last reviewed. In addition to this information, there is 
profiling source information for the columns. Here it is possible to switch 
the profiling from 1000 rows to the entire data set.

“An IDE for M development“

Functions in Power Query

Knowledge of functions is your best helper when working with 
a functional language such as M. Functions are called with 
parentheses.
› Shared – Is a keyword that loads all functions 

(including help and example) and enumerators in
result set. The call of function is made inside empty
query using by = # shared

Functions can be divided into two categories:
› Prefabricated – Example: Date.From()
› Custom – these are functions that the user himself prepares 

for the model by means of the extension of the notation by 
„()=> “, where the argumets that will be required for the 
evaluation of the function can be placed in parentheses. 
When using multiple argumets, it is necessary to separate 
them using a delimiter.

Each value type is associated with a literal syntax, a set of values 
​​of that type, a set of operators defined above that set of values, 
and an internal type attributed to the newly created values.
› Null – null

› Logical – true, false

› Number – 1, 2, 3, ...

› Time – #time(HH,MM,SS)

› Date – #date(yyyy,mm,ss)

› DateTime – #datetime(yyyy,mm,dd,HH,MM,SS)

› DateTimeZone –
#datetimezone(yyyy,mm,dd,HH,MM,SS, 9,00)

› Duration – #duration(DD,HH,MM,SS)

› Text – “text“

› Binary – #binary(“link“)

› List – {1, 2, 3}

› Record – [ A = 1, B = 2 ]

› Table – #table({columns},{{first row contenct},{}…})*

› Function – (x) => x + 1

› Type – type { number }, type table [ A = any, B = text ]
* The index of the first row of the table is the same as for the records in sheet 0

Operators
There are several operators within the M language, but not every 
operator can be used for all types of values. 
› Primary operators

› (x) – Parenthesized expression
› x[i] – Field Reference. Return value from record, list of values 
from table.
› x{i} – Item access. Return value from list, record from table.
“Placing the “?“ Character after the operator returns null if the 

index is not in the list “
› x(…) – Function invocation
› {1 .. 10} – Automatic list creation from 1 to 10
› … – Not implemented

› Mathematical operators – +, -, *, /
› Comparative operators

› > , >= – Greater than, greater than or equal to
› < , <= – Less than, less than or equal to
› = , <> – is equal, is not equal. Equal returns true even for
null = null

› Logical operators
› and – short-circuiting conjunction
› or – short-circuiting disjunction
› not – logical negation

› Type operators
› as – Is compatible nullable-primitive type or error
› is – Test if compatible nullable-primitive type

› Metadata - The word meta assigns metadata to a value. 
Example of assigning metadata to variable x:
“x meta y“ or “x meta [name = x, value = 123,…]“
Within Power Query, the priority of the operators applies, so for example 
“X + Y * Z“ will be evaluated as “X + (Y * Z)“

DEMO
›  Operators can be combined. For example, as follows:

›  LastStep[Year]{[ID]}
*This means that you can get the
value from another step based on the index of the column

›  Production of a DateKey dimension goes like this:
#table(

type table [Date=date, Day=Int64.Type, Month=Int64.Type, 
MonthName=text, Year=Int64.Type,Quarter=Int64.Type],

List.Transform(
List.Dates(start_date, (start_date-endd_ate), 

#duration(1, 0, 0 ,0)),
each {_, Date.Day(_), Date.Month(_), 

Date.MonthName(_), Date.Year(_), Date.QuarterOfYear(_)}
))

Keywords
and, as, each, else, error, false, if, in, is, let, meta, not,
otherwise, or, section, shared, then, true, try, type, #binary,
#date, #datetime, #datetimezone, #duration, #infinity, #nan,
#sections, #shared, #table, #time

Recursive functions

Example of custom function entries:
(x, y) => Number.From(x) + Number.From(y)

(x) => 
let

out = Number.From(x) +     
Number.From(Date.From(DateTime.LocalNow()))

in
out

The input argumets to the functions are of two types:
› Required – All commonly written argumets in (). Without 

these argumets, the function cannot be called.
› Optional – Such a parameter may or may not be to function to 

enter. Mark the parameter as optional by placing text before 
the argument name “Optional“. For example (optional x). If it 
does not happen fulfillment of an optional argument, so be the 
same for for calculation purposes, but its value will be null. 
Optional arguments must come after required arguments.

Arguments can be annotated with `as <type>` to indicate 
required type of the argument. The function will throw a type 
error if called with arguments of the wrong type. Functions can
also have annotated return of them. This annotation is provided
as: 
(x as number, y as text) as logical => <expression>

The return of the functions is very different. The output can be a 
sheet, a table, one value but also other functions. This means 
that one function can produce another function. Such a function 
is written as follows:

let first = (x)=> () => let out = {1..x} in out in first

When evaluating functions, it holds that:

› Errors caused by evaluating expressions in a list of 
expressions or in a function expression will propagate 
further either as a failure or as an “Error“ value

› The number of arguments created from the argument 
list must be compatible with the formal argumets of 
the function, otherwise an error will occur with reason 
code “Expression.Error“

For recursive functions is necessary to use the character “@“ 
which refers to the function within its calculation. A typical 
recursive function is the factorial. The function for the factorial 
can be written as follows:

let
Factorial = (x) =>

if x = 0 then 1 else x * @Factorial(x - 1),
Result = Factorial(3)

in
Result // = 6

Query Folding

› Each is essentially a syntactic abbreviation for declaring non-
type functions, using a single formal parameter named. 
Therefore, the following notations are semantically 
equivalent:

let
Source = ...,
addColumn = Table.AddColumn(Source, „NewName“, each [field1] + 1)

in
addColumn

------------------------------------------------------------------------------------------------------------------------------------------------------------------

let
Source = ...,
add1ToField1 = (_) => [field1] + 1,
addColumn(Source,“NewName“,add1ToField1)

in

The second piece of syntax sugar is that bare square brackets are syntax 
sugar for field access of a Record named ̀ _`.

As the name implies, it is about composing. Specifically, the 
steps in Power Query are composed into a single query, which 
is then implemented against the data source. Data sources
that supports Query folding are resources that support the 
concept of query languages as relational database sources. 
This means that, for example, a CSV or XML file as a flat file 
with data will definitely not be supported by Query Folding.
Therefore, the transformation does not have to take place 
until after the data is loaded, but it is possible to get the data 
ready immediately. Unfortunately, not every source supports 
this feature.
›  Valid functions

› Remove, Rename columns
› Row filtering
› Grouping, summarizing, pivot and unpivot
› Merge and extract data from queries
› Connect queries based on the same data source
› Add custom columns with simple logic

› Invalid functions
› Merge queries based on different data sources
› Adding columns with Index
› Change the data type of a column

Comments
M language supports two versions of comments:
› Single-line comments – can be created by // before code

› Shortcut: CTRL + ´
› Multi-line comments – can be created by /* before code and 

*/ after code
› Shortcut: ALT + SHIFT + A

Each
Functions can be called against specific arguments. However, if 
the function needs to be executed for each record, an entire 
sheet, or an entire column in a table, it is necessary to append 
the word each to the code. As the name implies, for each 
context record, it applies the procedure behind it. Each is never 
required! It simply makes it easier to define a function in-line 
for functions which require a function as their argument.

let expression

Conditions

The expression let is used to capture the value from an
intermediate calculation in a named variable. These named 
variables are local in scope to the `let` expression. The 
construction of the term let looks like this:

let
name_of_variable = <expression>,

returnVariable = <function>(name_of_variable)
in

returnVariable

When it is evaluated, the following always applies:

› Expressions in variables define a new range containing 
identifiers from the production of the list of variables and must
be present when evaluating terms within a list variables. The 
expressions in the list of variables are they can refer to each 
other

› All variables must be evaluated before the term let is evaluated.
› If expressions in variables are not available, let will not be 

evaluated
› Errors that occur during query evaluation propagate as an error 

to other linked queries.

Even in Power Query, there is an “If“ expression, which, based 
on the inserted condition, decides whether the result will be a 
true-expression or a false-expression.

Syntactic form of If expression:
if <predicate> then < true-expression > else < false-expression >

“else is required in M's conditional expression “

Condition entry:
If x > 2 then 1 else 0
If [Month] > [Fiscal_Month] then true else false

If expression is the only conditional in M. If you have multiple 
predicates to test, you must chain together like:
if <predicate>

then < true-expression > 
else if <predicate>

then < false-true-expression > 
else < false-false-expression >

When evaluating the conditions, the following applies:

› If the value created by evaluating the if a condition is not a 
logical value, then an error with the reason code
“Expression.Error„ is raised

› A true-expression is evaluated only if the if condition
evaluates to true. Otherwise, false-expression is evaluated.

› If expressions in variables are not available, they must not be 
evaluated

› The error that occurred during the evaluation of the condition 
will spread further either in the form of a failure of the entire 
query or “Error“ value in the record.

The expression try… otherwise
Capturing errors is possible, for example, using the try 
expression. An attempt is made to evaluate the expression 
after the word try. If an error occurs during the evaluation, the 
expression after the word otherwise is applied

Syntax example:
try Date.From([textDate]) otherwise null



 

 

 

 

 
 

 

 

 

7.3 Data Visualization 
 

 

 

 

 

 

 

 

 



> Visualize relationships
Bar chart

One of the easiest charts to 
read which helps in quick 
comparison of categorical 
data. One axis contains 
categories and the other axis 
represents values

U s e  c as e s

�� Volume of google 
searches by regio�

�� Market share in revenue 
by product

Column chart

Also known as a vertical bar 
chart, where the categories 
are placed on the x-axis. 
These are preferred over bar 
charts for short labels,  date 
ranges, or negatives in values

U s e  c as e s

�� Brand market shar�
�� Profit Analysis by region

Scatter plot

Most commonly used chart 
when observing the 
relationship between two 
variables. It is especially 
useful for quickly surfacing 
potential correlations 
between data points

U s e  c as e s

�� Display the relationship 
between time-on-platform 
and chur�

�� Display the relationship 
between salary and years 
spent at company

Connected scatterplot

A hybrid between a scatter 
plot and a line plot, the 
scatter dots are connected 
with a line 

U s e  c as e s

�� Cryptocurrency price 
inde�

�� Visualizing timelines and 
events when analyzing 
two variables

Bubble chart

Often used to visualize data 
points with 3 dimensions, 
namely visualized on the x-
axis, y-axis, and with the size 
of the bubble. It tries to show 
relations between data points 
using location and size

U s e  c as e s

�� Adwords analysis: CPC vs 
Conversions vs Share of 
total conversion�

�� Relationship between life 
expectancy, GDP per 
capita, & population size

Word cloud chart

Data
Science

Engineer

Analyst

A convenient visualization for 
visualizing the most prevalent 
words that appear in a text

U s e  c as e s

�� Top 100 used words by 
customers in customer 
service tickets 

How to use this cheat sheet
Use this cheat sheet for inspiration when making your next data visualizations. For more data visualization cheat sheets, 
check out our cheat sheets repository . here

The Data Visualization Cheat Sheet


Learn Data Visualization online at www.DataCamp.com

> Part-to-whole charts
Pie chart

One of the most common ways to 
show part to whole data. It is also 
commonly used with percentages

U s e  c as e s

�� Voting preference by age grou�
�� Market share of cloud providers

Donut pie chart

The donut pie chart is a variant of the 
pie chart, the difference being it has a 
hole in the center for readability

U s e  c as e s

�� Android OS market shar�
�� Monthly sales by channel

Heat maps

Heatmaps are two-dimensional charts 
that use color shading to represent 
data trends.

U s e  c as e s

�� Average monthly temperatures 
across the year�

�� Departments with the highest 
amount of attrition over time

Stacked column chart

Best to compare subcategories within 
categorical data. Can also be used to 
compare percentages

U s e  c as e s

�� Quarterly sales per regio�
�� Total car sales by producer

Treemap charts

2D rectangles whose size is 
proportional to the value being 
measured and can be used to display 
hierarchically structured data

U s e  c as e s

�� Grocery sales count with 
categorie�

�� Stock price comparison by 
industry and company

> Capture distributions
Histogram

Shows the distribution of a 
variable. It converts 
numerical data into bins as 
columns. The x-axis shows 
the range, and the y-axis 
represents the frequency

U s e  c as e s

�� Distribution of salaries in 
an organizatio�

�� Distribution of height in 
one cohort

Box plot

Shows the distribution of a 
variable using 5 key 
summary statistics—
minimum, first quartile, 
median, third quartile, and 
maximum

U s e  c as e s

�� Gas efficiency of vehicle�
�� Time spent reading across 

readers

Violin plot

A variation of the box plot. 

It also shows the full 
distribution of the data 
alongside summary statistics

U s e  c as e s

�� Time spent in restaurants 
across age group�

�� Length of pill effects by 
dose

Density plot

Visualizes a distribution by 
using smoothing to allow 
smoother distributions and 
better capture the 
distribution shape of the data

U s e  c as e s

�� Distribution of price of 
hotel listing�

�� Comparing NPS scores by 
customer segment

> Visualize a flow
Sankey chart

Useful for representing flows in 
systems. This flow can be any 
measurable quantity


U s e  c as e s

�� Energy flow between 
countrie�

�� Supply chain volumes 
between warehouses

Chord chart

Useful for presenting 
weighted relationships or 
flows between nodes. 
Especially useful for 
highlighting the dominant or 
important flows


U s e  c as e s

�� Export between countries 
to showcase biggest 
export partner�

�� Supply chain volumes 
between the largest 
warehouses

Network chart

Similar to a graph, it 
consists of nodes and 
interconnected edges. It 
illustrates how different 
items have relationships 
with each other

U s e  c as e s

�� How different airports are 
connected worldwide�

�� Social media friend group 
analysis

> Visualize a single value
Card

$7.47M
Total Sales

Cards are great for showing 
and tracking KPIs in 
dashboards or presentations

U s e  c as e s

�� Revenue to date on a 
sales dashboar�

�� Total sign-ups after a 
promotion 

Table chart

Best to be used on small 
datasets, it displays tabular 
data in a table


U s e  c as e s

�� Account executive 
leaderboard�

�� Registrations per webinar 

Gauge chart

This chart is often used in 
executive dashboard reports 
to show relevant KPIs

U s e  c as e s

�� NPS score�
�� Revenue to target 

> Capture a trend
Line chart

The most straightforward way to 
capture how a numeric variable is 
changing over time

U s e  c as e s

�� Revenue in $ over tim�
�� Energy consumption in kWh 

over tim�
�� Google searches over time

Multi-line chart

Captures multiple numeric 
variables over time. It can include 
multiple axes allowing comparison 
of different units and scale ranges

U s e  c as e s

�� Apple vs Amazon stocks 
over tim�

�� Lebron vs Steph Curry 
searches over tim�

�� Bitcoin vs Ethereum price 
over time

Area chart

Shows how a numeric value 
progresses by shading the area 
between line and the x-axis

U s e  c as e s

�� Total sales over tim�
�� Active users over time

Stacked area chart

Most commonly used variation of 
area charts, the best use is to track 
the breakdown of a numeric value 
by subgroups

U s e  c as e s

�� Active users over time by 
segmen�

�� Total revenue over time by 
country

Spline chart

Smoothened version of a line chart. 
It differs in that data points are 
connected with smoothed curves 
to account for missing values, as 
opposed to straight lines

U s e  c as e s

�� Electricity consumption over 
tim�

�� CO2 emissions over time

Learn Data Skills Online at 
www.DataCamp.com

https://www.datacamp.com/cheat-sheet


Visual
vocabulary
Designing with data

There are so many ways to visualise data - how do we 
know which one to pick? Use the categories across the 
top to decide which data relationship is most important in 
your story, then look at the di�erent types of chart within 
the category to form some initial ideas about what might 
work best. This list is not meant to be exhaustive, nor a 
wizard, but is a useful starting point for making 
informative and meaningful data visualisations.

FT graphic: Alan Smith; Chris Campbell; Ian Bott; Liz Faunce;

Graham Parrish; Billy Ehrenberg; Paul McCallum; Martin Stabe

Inspired by the Graphic Continuum by Jon Schwabish and Severino Ribecca

Flow
Show the reader volumes or intensity 
of movement between two or more 
states or conditions. These might be 
logical sequences or geographical 
locations.

Example FT uses
Movement of funds, trade, migrants, 
lawsuits, information; relationship 
graphs.

Waterfall

Sankey

Chord

Network

Waterfall

Sankey

Chord

Network

Spatial
Used only when precise locations or 
geographical patterns in data are 
more important to the reader than 
anything else. 

Example FT uses
Locator maps, population density, 
natural resource locations, natural 
disaster risk/impact, catchment areas, 
variation in election results

Basic choropleth (rate/ratio)

Scaled cartogram (value)

Flow map

Contour map

Equalised cartogram

Proportional symbol (count/magnitde)

Part-to-whole
Show how a single entity can be 
broken down into its component 
elements. If the reader’s interest is 
solely in the size of the components, 
consider a magnitude-type chart 
instead.

Example FT uses
Fiscal budgets, company structures, 
national election results

Stacked column

Change over Time
Give emphasis to changing trends. 
These can be short (intra-day) 
movements or extended series 
traversing decades or centuries: 
Choosing the correct time period is 
important to provide suitable context 
for the reader.

Example FT uses
Share price movements, economic 
time series

Column

Fan chart (projections)

Area chart

Line + column

Stock price

Slope

Calendar heatmap

Line

Priestley timeline

Circle timeline

Connected scatterplot

Seismogram

Magnitude
Show size comparisons. These can be 
relative (just being able to see 
larger/bigger) or absolute (need to 
see fine di�erences). Usually these 
show a ‘counted’ number (for example, 
barrels, dollars or people) rather than 
a calculated rate or per cent.

Example FT uses
Commodity production, market 
capitalisation

Paired column

Paired bar

Bar

Column

Deviation
Emphasise variations (+/-) from a 
fixed reference point. Typically the 
reference point is zero but it can also 
be a target or a long-term average. 
Can also be used to show sentiment 
(positive/neutral/negative).

Example FT uses
Trade surplus/deficit, climate change

Diverging bar

Diverging stacked bar

Surplus/deficit filled line

Spine chart

The standard approach 
for putting data on a 
map – should always be 
rates rather than totals 
and use a sensible base 
geography.

The standard way to 
compare the size of 
things. Must always 
start at 0 on the axis.

A simple way of 
showing part-to-whole 
relationships but can 
be difficult to read with 
more than a few 
components.

Columns work well 
for showing change 
over time - but 
usually best with only 
one series of data at 
a time.

A good way of 
showing the 
relationship over time 
between an amount 
(columns) and a rate 
(line).

Usually focused on 
day-to-day activity, 
these charts show 
opening/closing and 
hi/low points of each 
day.

Good for showing 
changing data as long 
as the data can be 
simplified into 2 or 3 
points without missing 
a key part of story.

Use with care – these 
are good at showing 
changes to total, but 
seeing change in 
components can be 
very difficult.

Use to show the 
uncertainty in future 
projections - usually 
this grows the further 
forward to projection.

A good way of 
showing changing 
data for two variables 
whenever there is a 
relatively clear pattern 
of progression.

A great way of 
showing temporal 
patterns (daily, weekly, 
monthly) – at the 
expense of showing 
precision in quantity.

Great when date and 
duration are key 
elements of the story 
in the data.

Good for showing 
discrete values of 
varying size across 
multiple categories 
(eg earthquakes by 
contintent).

The standard way to 
show a changing time 
series. If data are 
irregular, consider 
markers to represent 
data points.

Another alternative 
to the circle timeline 
for showing series 
where there are big 
variations in the data.

Pie

Donut

Treemap

Voronoi

Sunburst

Arc

Gridplot

Waterfall

Venn

A common way of 
showing part-to-whole 
data – but be aware 
that it’s difficult to 
accurately compare the 
size of the segments.

Similar to a pie chart – 
but the centre can be 
a good way of making 
space to include more 
information about the 
data (eg. total).

Use for hierarchical 
part-to-whole 
relationships; can be 
difficult to read when 
there are many small 
segments.

A way of turning 
points into areas – 
any point within each 
area is closer to the 
central point than 
any other centroid.

Another way of 
visualisaing hierarchical 
part-to-whole 
relationships. Use 
sparingly (if at all) for 
obvious reasons.

A hemicycle, often 
used for visualising 
political results in 
parliaments.

Good for showing % 
information, they 
work best when used 
on whole numbers 
and work well in 
multiple layout form. 

Generally only used 
for schematic 
representation.

Can be useful for 
showing part-to-whole 
relationships where 
some of the 
components are 
negative.

See above. Good 
when the data are not 
time series and labels 
have long category 
names.

As per standard 
column but allows for 
multiple series. Can 
become tricky to read 
with more than 2 
series.

See above.

Isotype (pictogram)

Lollipop chart

Proportional symbol

Radar chart

Parallel coordinates

Use when there are 
big variations between 
values and/or seeing 
fine di�erences 
between data is not so 
important.

Excellent solution in 
some instances – use 
only with whole 
numbers (do not slice 
o� an arm to 
represent a decimal).

Lollipop charts draw 
more attention to the 
data value than 
standard bar/column – 
does not HAVE to start 
at zero (but preferable).

A space-efficient way 
of showing value pf 
multiple variables– but 
make sure they are 
organised in a way that 
makes sense to reader.

An alternative to radar 
charts – again, the 
arrngement of the 
variables is important. 
Usually benefits from 
highlighting values.

Proportional stacked bar

A good way of 
showing the size and 
proportion of data at 
the same time – as 
long as the data are 
not too complicated. 

Use for totals rather 
than rates  – be wary 
that small di�erences 
in data will be hard to 
see.

For showing 
unambiguous 
movement across a 
map.

For showing areas of 
equal value on a map. 
Can use deviation 
colour schemes for 
showing +/- values

Converting each unit on 
a map to a regular and 
equally-sized shape – 
good for representing 
voting regions with 
equal value.

Stretching and 
shrinking a map so 
that each area is 
sized according to a 
particular value.

Designed to show the 
sequencing of data 
through a flow 
process, typically 
budgets. Can include 
+/- components.

A complex but 
powerful diagram 
which can illustrate 
2-way flows (and net 
winner) in a matrix.

Used for showing 
the strength and 
inter-connectdness 
of relationships of 
varying types.

The standard way to 
show a statistical 
distribution - keep the 
gaps between columns 
small to highlight the 
‘shape’ of the data.

Standard bar charts 
display the ranks of 
values much more 
easily when sorted 
into order.

The standard way to 
show the relationship 
between two 
continuous variables, 
each of which has its 
own axis.

A simple standard 
bar chart that can 
handle both negative 
and positive 
magnitude values.

Shows changes in flows 
from one condition to 
at least one other; good 
for tracing the eventual 
outcome of a complex 
process.

Summarise multiple 
distributions by 
showing the median 
(centre) and range of 
the data

Similar to a box plot 
but more e�ective with 
complex distributions 
(data that cannot be 
summarised with 
simple average).

A standard way for 
showing the age and 
sex breakdown of a 
population distribution; 
e�ectively, back to back 
histograms.

Good for showing 
individual values in a 
distribution, can be a 
problem when too 
many dots have the 
same value.

A simple way of 
showing the change 
or range (min/max) 
of data across 
multiple categories.

Like dot strip plots, 
good for displaying 
all the data in a 
table,they work best 
when highlighting 
individual values.

A good way of 
showing how unequal 
a distribution is: y axis 
is always cumulative 
frequency, x axis is 
always a measure.

See above.

Use when there are big 
variations between 
values and/or seeing 
fine di�erences 
between data is not so 
important.

Dots placed in order 
on a strip are a 
space-efficient 
method of laying out 
ranks across multiple 
categories.

Perfect for showing 
how ranks have 
changed over time or 
vary between 
categories. 

Lollipops draw more 
attention to the data 
value than standard 
bar/column and can 
also show rank and 
value e�ectively.

A good way of 
showing the 
relationship between 
an amount (columns) 
and a rate (line).

Usually used to show 
how the relationship 
between 2 variables 
has changed over 
time. 

Like a scatterplot, but 
adds additional detail 
by sizing the circles 
according to a third 
variable.

A good way of showing 
the patterns between 2 
categories of data, less 
good at showing fine 
di�erences in amounts.

Perfect for 
presenting survey 
results which involve 
sentiment (eg 
disagree/neutral/
agree).

Splits a single value 
into 2 contrasting 
components (eg
Male/Female).

The shaded area of 
these charts allows a 
balance to be shown 
– either against a 
baseline or between 
two series.

Ranking
Use where an item’s position in an 
ordered list is more important than its 
absolute or relative value. Don’t be 
afraid to highlight the points of 
interest.

Example FT uses
Wealth, deprivation, league tables, 
constituency election results

Ordered column

Ordered proportional symbol

Lollipop chart

Slope

Dot strip plot

Ordered bar

Correlation
Show the relationship between two or 
more variables. Be mindful that, unless 
you tell them otherwise, many readers 
will assume the relationships you 
show them to be causal (i.e. one 
causes the other).

Example FT uses
Inflation & unemployment, income & 
life expectancy

Line + Column

Connected scatterplot

Bubble

XY heatmap

Scatterplot

Distribution
Show values in a dataset and how 
often they occur. The shape (or ‘skew’) 
of a distribution can be a memorable 
way of highlighting the lack of 
uniformity or equality in the data.

Example FT uses
Income distribution, population 
(age/sex) distribution

Histogram

Boxplot

Violin plot

Dot plot

Population pyramid

Dot strip plot

Barcode plot

Cumulative curve

Proportional stacked bar

A good way of 
showing the size and 
proportion of data at 
the same time – as 
long as the data are 
not too complicated. 

Dot density

Used to show the 
location of individual 
events/locations – 
make sure to annotate 
any patterns the 
reader should see.

Heat map

Grid-based data values 
mapped with an 
intensity colour scale. 
As choropleth map – 
but not snapped to an 
admin/political unit.

ft.com/vocabulary



 

 

 

 

 

 

 

 

8. Emerging Technologies 
 

 

 

 

 

 

 

 

 

 

 

 

 



Top 10 Technology Trends

Robotic Process Automation (RPA)
Technology that mimics the way humans interact
with software to perform high-volume, repeatable
tasks

Artificial Intelligence (AI)
Simulation of human intelligence processes by machines,
which includes machine, deep, and reinforcement learning,
natural language processing and computer vision

Extended Reality (XR)
Technology that represents all human-machine
interactions, which includes augmented reality
(AR), mixed reality (MR) and virtual reality (VR)

Internet of Things (IoT)
Networking capability that allows information to
be sent to and received from objects and devices
(things).

Cloud Computing
Delivery of different services through the Internet,
including data storage, servers, databases,
networking, and software.

5th Generation Network (5G)
5G is the fifth generation of wireless technology,
which can provide higher speed, lower latency and
greater capacity than 4G LTE networks

Blockchain
Technology that facilitates the process of recording
transactions and tracking assets in a business
network, where an asset can be tangible ( house,
car, land) or intangible (patents, copyrights,
branding)

Quantum Computing
Machines that use the properties of quantum physics to store data 
and perform computations, which can result in a computer 158 
million times faster than the most sophisticated supercomputer we 
have in the world today

Cyber Security
Application of technologies, processes and controls to protect
systems, networks, programs, devices and data from cyber
attacks

3D Printing 
Also known as additive manufacturing, is a method of 
creating a three dimensional object layer-by-layer using a 
computer created design. 
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Prepered by: Dr. Mejdal

https://www.linkedin.com/in/dr-mejdal-alqahtani-18171b42
https://twitter.com/Dr_Mejdal?s=20


 

 

 

 

 
 

 

 

8.1 Artificial Intelligence (AI) 
 

 



Predict between 
two categories

Predict between 
several categories

Under 100 features, 
aggressive boundary Fast training times

Identifies and predicts rare or unusual data points

Discover structure

Unsupervised learning

Separates similar data points into intuitive groups

Modern deep 
learning neural 
network

Classifies images with popular networks

Generate recommendations

Collaborative filtering, better performance 
with lower cost by reducing dimensionality

Hybrid recommender, both collaborative 
filtering and content-based approach

Predicts what someone will be interested in

Extract information from text

Converts text data to integer 
encoded features using the 
Vowpal Wabbit library

Creates a dictionary of n-grams 
from a column of free text

Unsupervised topic modeling, 
group texts that are similar

Converts words to values for use in 
NLP tasks, like recommender, named 
entity recognition, machine 
translation

Derives high-quality information from text

Performs cleaning operations on text, 
like removal of stop-words, case 
normalization

Fast training times, 
linear model

Accuracy, long training times

Accuracy, fast training times

Depends on the 
two-class classifier
Depends on binary classifier,
less sensitive to an imbalanced 
dataset with larger complexity

Non-parametric, fast 
training times and scalable

Answers complex questions with 
multiple possible answers

Under 100 features, 
linear model

Fast training, linear model

Accurate, fast training

Fast training, linear model

Accurate, fast training, 
large memory footprint

Accurate, long training 
times

Answers simple two-choice questions, 
like yes or no, true or false

Makes forecasts by estimating the 
relationship between values

Predicts event counts

Fast training, linear model

Linear model, small data sets

Accurate, fast training times

Accurate, long training times

Accurate, fast training times, 
large memory footprint

Predicts a distribution

Predict 
values

Find unusual occurrences

What do you want to do?

Classify 
images

Answers questions like: What info is in this text?

Regression 

Poisson Regression 

Linear Regression  

Bayesian Linear 
Regression

Decision Forest 
Regression 

Neural Network 
Regression 

Boosted Decision 
Tree Regression 

Answers the question: What will they be interested in?

Answers questions like: How much or how many?

Answers questions like: How is this organized?

Answers the question: Is this weird?

Answers questions like: What does this image represent?

Answers questions like: Is this A or B?

Answers questions like: Is this A or B or C or D?
Text Analytics

Extract N-Gram 
Features from Text

Latent Dirichlet 
Allocation

Feature Hashing

Preprocess Text

Word2Vector

SVD Recommender

Recommenders

Fast Forest Quantile 
Regression 

Clustering

K-Means

Anomaly Detection

PCA-Based Anomaly 
DetectionOne Class SVM 

Image Classification

DenseNet

Two-Class Support 
Vector Machine

Two-Class Averaged 
Perceptron

Use the Train Wide & Deep 
Recommender module

Two-Class Decision 
Forest

Two-Class Logistic 
Regression

Two-Class Boosted 
Decision Tree

Two-Class Neural 
Network 

Two-Class Classification

Multiclass Logistic 
Regression

One-vs-One 
Multiclass

ResNet

Multiclass Neural 
Network

Multiclass Decision 
Forest

One-vs-All 
Multiclass

Multiclass Boosted 
Decision Tree

Multiclass Classification

 © 2021 Microsoft Corporation. All rights reserved. Share this poster: aka.ms/mlcheatsheet

This cheat sheet helps you choose the best machine learning algorithm for your predictive analytics solution. 
Your decision is driven by both the nature of your data and the goal you want to achieve with your data. 

Machine Learning Algorithm Cheat Sheet



 

 

 

 

 

 

 

8.2 Internet of Things (IoT) 

 

 

 

 

 

 

 

 



Overview Challenge Solution Results

If machines could talk
- and tell you when
they were going to
break down.

When a machine is not
functioning properly,
productivity drops.
How can you tell,
quickly, that
something is wrong?

IoT sensors on
agricultural machinery
were connected to the
cloud. Managers &
workers received
immediate
notifications when the
machine was not
functioning properly.

This also resulted in
predictive data
analysis from the
information provided.
Engineers started to
build a picture and
predict when the
machine would break
and plan maintenance.
This increased
productivity to 100%.

Remote Monitoring -
Improving work
performance. 

Staff shortages for a
civil engineering
company reduced the
number of onsite visits
that could be carried
out. 

Rather than manually
taking readings and
producing reports, 
 data was collected on
IoT sensors, uploaded
to the cloud and this 
 generated a report.

Improved efficiencies,
enabling the company
to take on more
projects and increase
their customer base.

Blinding the
competition - how to
get a USP with IoT.

Consumers want
smarter, simpler
everyday devices.

Blinds that are IoT
enabled - features
include a camera,
thermometer, lighting
and sensors, allowing
for seamless
integration into the
home environment.

"Work still on-going on  
IoT products at Bloc
Blinds as it is an
exciting space with
loads of potential!"

Read how
Magherafelt's Bloc
Blinds has
incorporated IoT
technologies

The Internet of Things (IoT) refers to a system of interrelated, internet-connected objects that can collect and
transfer data over a wireless network without human intervention. IoT devices are basically "smart" devices that
make "smart" systems (for e.g., smart home, smart factory, smart farms, smart cities, etc.).

Internet of ThingsInternet of Things

Cheat sheet

Cheat sheet

https://www.newsletter.co.uk/business/bloc-blinds-showcases-state-art-device-las-vegas-163231


 

 

 

 

 

 

 

8.3 Robotic Process Automation (RPA) 

 

 

 

 

 

 

 

 



ROBOTIC PROCESS 

AUTOMATION

CHEAT SHEET

RPA Basics

RPA is a Robotic Process Automation which is used for automating the current workflows 

with the help of robots to reduce human intervention at every point

Robotic: Machines that mimics the human activities and actions are called as robots

Process: Sequence of steps which is used to perform a particular task

Automation: Any process which is done by robot without any human intervention and 

provides high degree of accuracy

R P A

It is built with a simple concept by replicating user activity. SQL Server 

is the tool where data is stored 

B l u e  P r i s m

The architecture consists of client, bots and control room. Automation 

Anywhere is a software designed to virtually automate any computer 

process. SQL express is a tool where data is stored. 

A u t o m a t i o n  

A n y w h e r e

• Technology: Many organizations perform the tasks 

outside the local system using Virtual Machines or 

Citrix. Hence, the tool must be platform independent 

and support any type of application

• Scalability: How quickly and easily the tool responds 

to the business requirements

• Security: Implementations of security controls must 

be measured

• Total Cost: The initial set-up cost, vendor license fee, 

maintenance cost must be taken into consideration 

while selecting the tool

• Ease of use and control: The tool must be user 

friendly to increase the efficiency and employee 

satisfaction 

• Vendor Experience: It improves the speed of 

implementation by reducing the work required to 

implement RPA software

• Maintenance and support: To make sure that the 

required service level agreements are met

• Quick Deployment: The tool must be able to work as 

a real end-user by interacting with applications.

R P A  T o o l  F a c t o r s

FURTHERMORE: 
RPA Training using UiPath

It is a simple software automation and application integration expert. 

UiPath consists of three parts

• UiPath studio

• UiPath robots

• UiPath orchestrator

U i  P a t h

VENDOR Free Version Pricing Usability
Global 

Coverage

Another Monday ---- ---- ---- Europe

AntWorks ---- ---- ---- ----

Arago ---- ---- ---- ----

Automation 

Anywhere
---- Per Process

Drag & Drop, 

Macro Recording
Global

BluePrism ---- Per bot Drag & Drop ----

Contextor
---- ---- ----

EMEA & North 

America

Jidoka ---- ---- ---- ----

Kofax ---- ---- ---- Global

Kryon Systems ---- ---- ---- ----

Nice systems ---- ---- ---- Global

Pega ---- ---- ---- Global

Redwood 

software
---- ---- ---- ----

UiPath
UiPath Community 

Edition
Per bot

Drag & Drop, 

Macro Recording
Global

Visual Cron 45 day free trial Per server Drag & Drop ----

WorkFusion
WorkFusion 

RPA Express
Per process

Drag & Drop, 

Macro Recording
Global

Applications

BUSINESS 
LOGIC

BUSINESS 
LOGIC

BUSINESS 
LOGIC

User Interface

User Interface

User Interface

VIRTUAL 
BUSINESS 

OBJECT (VBO) 

VIRTUAL 
BUSINESS 

OBJECT (VBO) 

VIRTUAL 
BUSINESS 

OBJECT (VBO) 

PROCESS 
STUDIO

OBJECT 
STUDIO

BLUE PRISM 
DATABASE

BLUE PRISM 
PROCESS

CONTROL 
ROOM

SYSTEM 
MANAGER

CONTROL ROOM

DEVELOPER 1

DEVELOPER 2

DEVELOPER 3

BOT CREATOR AND DESKTOP 
APPLICATION

BOT 
RUNNER

BOT 1

BOT 2

BOT 3
• User Management
• Source Control
• Dashboard
• License Management

Browser (desktop) Mobile devices

PORTAL

---

DB DB

Data tier

Logic tier

Information tier

Access Manager

Company 
directory server

External Users Db

OASP sample 
application

• Reduces burden on IT: It does not disturb underlying 

legacy systems

• Reliability: As the bots can work 24*7 effectively

• Cost cutting technology: It reduces the costs by 

reducing the size of manual workforce

• No coding required: To use RPA tools, a person need 

not have the programming skills

• Accuracy: It functions with accuracy and is less prone 

to errors 

• Productivity rate: Execution time is much faster than 

the manual process approach

• Compliance: It follows the rules to provide audit free 

trail

• Consistency: Repetitive tasks are performed in the 

same way

• Increase employee engagement: It lets the employee 

to focus on value-added activities

B e n e f i t s  o f  

U s i n g  R P A

RPA

VIRTUAL 
EMPLOYEE

NO PHYSICAL 
BOT

TIME-TO-
MARKET

WITHIN A 
FEW WEEKS

USES THE 
EXISTING 

APPLICATION

NO CHANGES IN 
THE EXISTING 

INFRASTRUCTU
RE NEEDED

DOCUMENTS 
EVERY STEP 

CONSISTENTLY

• It is used in customer service, to automate service order 

management and quality reporting

• Travel and logistics: for ticket booking, passenger details and 

accounting

• Human Resource: New employees joining formalities, payroll 

process and hiring shortlisted candidates

• Health care: In patient registrations and billing

• Banking and Financial services: It can be used for card activation 

and fraud claims and discovery

• Government: Change of address and license renewal

A p p l i c a t i o n s  
o f  R P A

https://intellipaat.com/
https://intellipaat.com/rpa-training/


 

 

 

 

 

 

 

8.4 Cloud Computing 

 

 

 

 

 

 

 

 



What is Cloud Computing ???

“Cloud Computing is an approach to offer IT Services to customers remotely is called 

Cloud Computing”

Cloud Computing – Summary Cheat sheet

Cloud Computing Models

Static Routing

Networking Networking Networking

Storage Storage Storage Storage

Servers Servers Servers Servers

Virtualization Virtualization Virtualization Virtualization

O/S O/S O/S O/S

Middleware Middleware Middleware Middleware

Runtime Runtime Runtime Runtime

Data Data Data Data

Applications Applications Applications Applications

Traditional IT
(On-Premises)

IaaS SaaS
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PaaS

Networking

Customization, Higher costs, Slower time to value

Standardization, Lower costs, Faster time to value

SaaS

PaaS

IaaS

C
O

N
TR

O
L

Suitable for End Users

Suitable for Developers

For Net Arch’s, IT Admins

e.g. Gmail, Office365,..

AWS, Google Apps Eng,..

e.g. MS Azure, Google CE

CLOUD Types
(Based on Location & Deployment)

1. Public 2. Private

Internal Cloud External Cloud

3. Hybrid 4. Community

CLOUD Types
(Based on Services)

1. Iaas 2. PaaS 3. SaaS 4. Other Types

STaaS SECaaS DaaS TEaaS APIaaS FaaS

Advantages of Cloud Computing Disadvantages of Cloud Computing

↑ Cost Effective (Low CAPEX/OPEX)

↑ Scalable, Standardized Model, 

Highly Reliable

↑ Quick in Deployment, Easy 

Disaster Recovery, Flexible

↓ Less Secure

↓ Limited Control (especially 

SaaS/Paas Models)

↓ Requires Extra Bandwidth

Your Feedback, Comments are always Welcomed: info@networkwalks.com

/Network Walks /NetworkWalks /company/networkwalks

New batch of online Cisco CCNA 200-301 is starting! 
Enrol today with us for quality training: info@networkwalks.com 

Visit our website & You Channel for more FREE resources like Cheatsheets, 
Workbooks, Labs, Interview Questions, Quiz, VCE exams

Network Walks Training Academy www.networkwalks.com

www.networkwalks.com 

www.networkwalks.com 

www.networkwalks.com 

www.networkwalks.com 
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Version 2

https://www.networkwalks.com/
https://www.networkwalks.com/
https://www.youtube.com/ATechIT
https://www.linkedin.com/company/networkwalks
https://www.facebook.com/NetworkWalks/
mailto:info@networkwalks.com
https://wa.me/971528110952
mailto:info@networkwalks.com
mailto:info@networkwalks.com
http://networkwalks.com/
https://www.networkwalks.com/
https://www.networkwalks.com/
http://www.networkwalks.com/
http://www.networkwalks.com/
http://www.networkwalks.com/
http://www.networkwalks.com/
http://www.networkwalks.com/
http://www.networkwalks.com/


 

 

 

 

 

 

 

8.5 Quantum Computing 

 

 

 

 

 

 

 

 
 

 



• History of Quantum computing 

             

• Classic computing vs Quantum computing 

 



 

 

 

 

 

 

 

8.6 3D Printing 

 

 

 

 
 

 

 

 

 

 

 

 

 



• History of 3D printing Technology 

 
• How 3D printing works? 

 

• Type of 3D Printing Technologies 

 



3D Printing Options Cheat Sheet
by [deleted] via cheatography.com/2754/cs/16505/

Introd ​uction

Our manufa ​cturing industry generally – and 3D printing specif ​ically –
is driven by innova ​tion. Indeed, key techno ​logical develo ​pments and
new applic ​ations in indust ​ria ​l-grade 3D printing, or additive manufa ​‐
ctu ​ring, continue to advance this techno ​logy, which has only been
around for a little more than 30 years.
Designers and engineers can now choose from several distinct
classes of 3D printing techno ​logies. Your choice of “tool” just
depends on what it is you’re designing and what its final applic ​ation
is. Here’s a brief roundup of some of the main indust ​ria ​l-grade 3D
printing options:

Source: https: ​//w ​ww.m ​ed ​ica ​lde ​sig ​nan ​dou ​tso ​urc ​ing.co ​m/3 ​d-p ​rin ​tin ​g-
o ​pti ​ons ​-me ​dic ​al- ​dev ​ice ​-de ​vel ​opment/

Stereo ​lit ​hog ​raphy (SL)

Stereo ​lit ​hog ​raphy (SL) uses an ultrav ​iolet laser that draws on the
surface of a liquid thermoset resin to create thousands of thin layers
until final parts are formed. SL is used to create concept models,
cosmetic protot ​ypes, and complex parts with intricate geomet ​ries.

Selective laser sintering (SLS)

Selective laser sintering (SLS) uses a CO2 laser that lightly fuses
nylon- ​based powder, layer by layer, until final thermo ​plastic parts are
created. SLS produces accurate prototypes and functional production
parts.

Direct metal laser sintering (DMLS)

Direct metal laser sintering (DMLS) uses a fiber laser system that
draws onto a surface of atomized metal powder, welding the powder
into fully dense metal parts. DMLS builds fully functional metal
prototypes and production parts and works well to reduce metal
components in multipart assemb ​lies.

PolyJet

PolyJet uses a jetting process in which small droplets of liquid
photop ​olymer are sprayed from multiple jets onto a build platform
and cured in layers that form elasto ​meric parts. PolyJet produces
multi- ​mat ​erial prototypes with flexible features at varying durometers
and is often used to concept overmo ​lding designs.

 

3D Printing

Fused Deposition Modeling (FDM)

Fused deposition modeling (FDM) works by feeding a filament or
spool of plastic into a heated nozzle, which then extrudes successive
layers of thermo ​pla ​stics onto the workpiece. FDM offers a wide
thermo ​plastic material selection and is leveraged for iterative protot ​‐
yping.

Continuous Liquid Interface Production (CLIP)

Carbon is the name of the company that is using a process called
CLIP, Continuous Liquid Interface Produc ​tion, which builds parts
from the top down, unlike other additive techno ​logies that work from
the bottom up. Final plastic parts exhibit excellent mechanical
properties and surface finishes.

Multi Jet Fusion

Multi Jet Fusion process select ​ively applies fusing and detailing
agents across a bed of nylon powder, which are fused in thousands
of layers by heating elements into a solid functional component.
Final parts exhibit improved surface roughness, fine feature resolu ​‐
tion, and more isotropic mechanical properties when compared to
processes like SLS.

By [deleted]
cheatography.com/deleted-
2754/

 

Published 23rd December, 2018.
Last updated 23rd December, 2018.
Page 1 of 1.

 

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-2754/
http://www.cheatography.com/deleted-2754/cheat-sheets/3d-printing-options
https://www.medicaldesignandoutsourcing.com/3d-printing-options-medical-device-development/
https://cheatography.com/uploads/davidpol_1545538799_3D%20Printing.gif
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8.7 5th Generation Network (5G) 

 
 



• History of 5G network 
 

 
 
 

• Advantages of 5G network 

 



 

 

 

 

 

 

 

8.8 Extended Reality (XR) 

 

 

 

 

 

 

 

 



Overview Challenge Solution Results

VR versus Covid-19 -
Continuing business
remotely.

Due to Covid-19,
restrictions a
company who
delivered forklift driver
training was unable to
provide practical
instruction sessions. 

Use of virtual reality to
train construction
workers to use a
forklift remotely.

Also being used to deliver
Health & Safety training to oil
rig workers before they are
deployed.

VR is being used to show
potential apprentices what
experience they would receive
without distracting workers
from their activities.

Training occurred
remotely using VR for
the first two days, then
onsite with the forklift
on the 3rd. This
improved productivity,
as the forklift became
available for work
purposes for two days,
when it was previously
required for training. 

Adding value through
AR – Business growth
in a post Covid-19
environment.

An interior design
consultancy was
struggling with a lack
of business due to
Covid-19 restrictions. 
 Designers were
unable to visit
customers' homes.

Customers used AR to
take measurements,
and designers were
able to create and
place items within
their 3D world.

They were able to
survive Covid-19 by
bringing their business
online. Also, they can
now access a wider
client base and scale
their business, as with
AR their market is no
longer restricted by
distance.

Creating Tourist
Destinations using AR
– increasing visitor
numbers & revenue.

Tourists, day trippers,
and locals are all
looking for new
experiences.

An interactive AR app
to create a huge scale
solar system trail.
There is also an app
for those following the
trail giving information
on the planets and
solar system.

Will reach millions,
bring people together
and showcase UK
creativity globally.
Read more about
Northern Ireland's
Our Place in Space -
a 3 dimensional
sculpture trail,
interactive AR app!

Immersive technologies create experiences by merging the physical world with a digital / simulated
reality. Augmented reality (AR) and virtual reality (VR) are the two main types of immersive tech. AR
blends computer-generated information onto the user’s real environment. VR uses computer-
generated information to provide a full sense of immersion.

Immersive TechImmersive Tech

Cheat sheet

Cheat sheet

The Digital Surge Programme is part funded by
Invest Northern Ireland and the European Regional
Development Fund under the Investment for Growth
& Jobs Northern Ireland (2014-2020) Programme.

https://www.belfastlive.co.uk/news/oliver-jeffers-huge-scale-solar-22428570
https://www.belfastlive.co.uk/news/oliver-jeffers-huge-scale-solar-22428570
https://www.belfastlive.co.uk/news/oliver-jeffers-huge-scale-solar-22428570






 

 

 

 

 

 

 

8.9 Blockchain 

 

 

 

 

 

 

 

 



Overview Challenge Solution Results

Connecting through
Blockchain –
Increasing
productivity and
profitability.

How to track devices
through a supply chain
in the medical devices
sector?

Each supplier was
invited to the
blockchain, added
data about the parts
they were making, and
added status. 

Able to view the origin
of raw materials, have
an estimated delivery
of parts from 30
different suppliers,
and guarantee
provenance of medical
grade products. This
led to a significant
increase in
productivity,
approximately 5-10%
increase in turnover
due to increased
capacity, and 70%
reduction in manual
report creation.

Food and Beverage
Traceability –
Showcasing the truth
of your product.

How to create a safer
and more transparent
supply chain? 

Used blockchain
technology and
included a QR code on
food and beverage
products to allow the
customer to see
exactly how the
product was made.

Using blockchain
enhanced the
transparency of
product information,
reduced food fraud,
and waste. It
increased food safety
and profitability
among food suppliers.
And it improved
consumer information,
boosting trust & sales.

See how a County
Down enterprise uses
blockchain to reveal
everything that a
consumer would
want to know about
their beer!

Blockchain is a shared, immutable ledger for recording transactions and tracking assets in a business network.
With blockchain technology, companies can establish a transparent supply chain, verify the authenticity of
product claims and gain consumer trust. 

BlockchainBlockchain

Cheat sheet

Cheat sheet

https://www.down-stream.io/


 

 

 

 
 

 

 

 

 

 

8.10 Cyber Security 
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Businesses worldwide are at risk for security breaches. While large, 

well-known companies seem like a likely target, small and medium-

sized organizations and individuals are also at risk. There are many 

ways data can be compromised, including viruses, phishing scams, 

hardware and software vulnerabilities, and network security holes. 

Did you know? 

11% of U.S. 

adults have had 

personal 

information stolen 

1 in 5 people have 

had an email or 

social media 

account hacked 

98% of 

software 

applications 

are vulnerable 

Only 40% of 

adults know how 

to protect 

themselves online 

Security Risks 

The first line of defense in maintaining 

system security is using complex 

passwords. Use passwords that are at least 

8 characters long and include a 

combination of numbers, upper and 

lowercase letters, and special characters. 

Hackers have tools that can break easy 

passwords in just a few minutes.  

There are 2 kinds of passwords: 

Lowercase letters 

only 

Upper & lowercase 

 letters, numbers, & 

special characters 

Here’s how long it takes to crack a 

password when it’s simple vs. complex 

 

8 

9 

10 

11 

12 

Passwords 

Cyber Security 
Quick Reference Guide 

When dealing with security, confidentiality means private information

is never viewed by unauthorized parties. Confidential information 

must only be accessible to those authorized to view the sensitive 

data. Confidential information includes: 

 

Personal Information 

• Social Security Number

• Home Address

• Salary History

• Performance Issues

• Credit Card Numbers

Confidential Information 

Corporate Information 

• Processes

• Customer Lists

• Research and Development

• Business Strategies

• Objectives and Projections

Source: mywot.com 

Firewalls 

A firewall acts like a security guard 

      and prevents unauthorized people 

   or programs from accessing a           

    network or computer from the 

    Internet. There are hardware- 

              based firewalls, which create a 

       protective barrier 

  between internal 

 networks and the 

   outside world, and  

      software firewalls, which 

      are often part of your  

      operating system. 

How Long Does it Take to 

Crack a Password? 

Simple Complex 

Complex passwords are 

EXPONEN TIALLY 

More difficult to crack 

Use them! 

Characters Password Time to crack 

ghiouhel 

ghiouH3l 

4 hours, 7 min 

6 months 

houtheouh 

Houtheo!2 

4 days, 11 hours 

1060 years 

ghotuhilhg 

gh34uhilh! 

112 days 

1500 years 

wopthiendhf 

w3pthi7ndh! 

8 years, 3 months 

232,800 years 

whithgildnzq 

@hi3hg5ldnq!

!

210 years 

15,368,300 years 

https://www.customguide.com/quick-reference?utm_source=qr&utm_medium=pdf&utm_campaign=qr-ref
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 Malware is short for "malicious software." It is written to infect the host computer. Common types of malware include: 

Malware 

• Use Wi-Fi password security and

change the default password

• Set permissions for shared files

• Only connect to known, secure public

Wi-Fi and ensure HTTPS-enabled sites

are used for sensitive data

• Keep your operating

system updated

• Perform regular

security checks

• Browse smart!

Network Security 

A phishing email tries to trick consumers into providing confidential data to steal money or information. These emails 

appear to be from a credible source, such as a bank, government entity, or service provider. Here are some things to 

look for in a phishing email: 

Email and Phishing 

Browsers communicate to websites with a protocol called HTTP, 

which stands for Hyper Text Transfer Protocol. HTTPS is the secure 

version of HTTP. Websites that use HTTPS encrypt all communication 

between your browser and the site.  

Secure sites have an indicator, 

like a padlock, in the address bar 

to show the site is secure. You 

should always ensure security 

when logging in or transferring 

confidential information. 

Online Browsing 

Sender’s Address 

The address should 

be correlated with the 

sender 

Hover Link 

Always check where 

links lead before 

clicking 

Attachments 

Never open an 

attachment you 

aren’t expecting 

Grammatical Errors 

Spelling mistakes and 

poor grammar 

Generic References 

Not being addressed 

by your name 

Immediate Action 

Beware of anything 

that calls for urgent 

action 

Sites without HTTPS are not 

secure and should never be 

used when dealing with personal 

data. If you are simply reading 

an article or checking the 

weather, HTTP is acceptable. 

Replicating computer 

program that infects 

computers 

Hijacks your computer or 

browser and displays 

annoying advertisements 

Secretly tracks your 

internet activities and 

information 

Malicious program that 

tries to trick you into 

running it 
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